-
Notifications
You must be signed in to change notification settings - Fork 0
/
costFunction.m
37 lines (27 loc) · 1.1 KB
/
costFunction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%
h = X*theta;
predicions = sigmoid(h);
J = (1/m)*sum((-y.*log(predicions))-((1-y).*log(1-predicions)));
grad(1) = (1/m)*sum(predicions-y);
for i= 2:size(theta),
grad(i) = (1/m)*(sum((predicions-y).*X(:,i)));
endfor
% =============================================================
end