Skip to content

[CVPR 2024] Joint-Task Regularization for Partially Labeled Multi-Task Learning

License

Notifications You must be signed in to change notification settings

KentoNishi/JTR-CVPR-2024

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[CVPR 2024] Joint-Task Regularization for Partially Labeled Multi-Task Learning

Updates

  • June 2024: Code released for Cityscapes onelabel.
  • May 2024: Code released for NYUv2 onelabel and randomlabels.
  • May 2024: Website updated with the CVPR poster and video.
  • April 2024: Paper website published at kentonishi.com/JTR-CVPR-2024.

Usage

Setup

First, download the dataset following the instructions in the MTPSL repository.

Training JTR

Code for training JTR is stored in the ./code directory. Some example commands are provided below:

cd code

# NYUv2 onelabel
python train_nyuv2.py \
  --data-dir [/some/data/dir] \
  --out-dir [/some/output/dir/nyuv2_onelabel] \
  --ssl-type onelabel \
  --label-dir ./data/nyuv2_settings \
  --seg-baseline 25.75 --depth-baseline 0.6511 --norm-baseline 33.73

# NYUv2 randomlabels
python train_nyuv2.py \
  --data-dir [/some/data/dir] \
  --out-dir [/some/output/dir/nyuv2_randomlabels] \
  --ssl-type randomlabels \
  --label-dir ./data/nyuv2_settings \
  --seg-baseline 27.05 --depth-baseline 0.6626 --norm-baseline 33.58

# Cityscapes onelabel
python train_cityscapes.py \
  --data-dir [/some/data/dir] \
  --out-dir [/some/output/dir/cityscapes_onelabel] \
  --label-dir ./data/cityscapes_settings \
  --seg-baseline 69.50 --depth-baseline 0.0186

Patching MTPSL

For convenience, we provide a git patch (./code/patches/mtpsl.patch) to modify the MTPSL training code with our dataloader parameters. You can apply the patch as follows:

git clone git@github.com:VICO-UoE/MTPSL.git
cd MTPSL
git apply /path/to/mtpsl.patch

After applying the patch, you can simply run the commands in the MTPSL repository's README.

Contact

If you have any questions, please contact Kento Nishi and Junsik Kim at kentonishi@college.harvard.edu and jskim@seas.harvard.edu.

Citation

If you find this code useful, please consider citing our paper:

@misc{nishi2024jointtask,
    title={Joint-Task Regularization for Partially Labeled Multi-Task Learning}, 
    author={Kento Nishi and Junsik Kim and Wanhua Li and Hanspeter Pfister},
    year={2024},
    eprint={2404.01976},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

About

[CVPR 2024] Joint-Task Regularization for Partially Labeled Multi-Task Learning

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published