forked from pyomeca/bioptim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
custom_bounds.py
329 lines (284 loc) · 12.7 KB
/
custom_bounds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
"""
This example is a trivial box sent upward. It is designed to investigate the different
bounds one can define in bioptim.
Therefore, it shows how one can define the bounds, that is the minimal and maximal values
of the state and control variables.
All the types of interpolation are shown:
InterpolationType.CONSTANT: All the values are the same at each node
InterpolationType.CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT: Same as constant, but have the first
and last nodes different. This is particularly useful when you want to fix the initial and
final position and leave the rest of the movement free.
InterpolationType.LINEAR: The values are linearly interpolated between the first and last nodes.
InterpolationType.EACH_FRAME: Each node values are specified
InterpolationType.SPLINE: The values are interpolated from the first to last node using a cubic spline
InterpolationType.CUSTOM: Provide a user-defined interpolation function
"""
import numpy as np
from bioptim import (
BiorbdModel,
Node,
OptimalControlProgram,
Dynamics,
DynamicsFcn,
Objective,
ObjectiveFcn,
ConstraintList,
ConstraintFcn,
BoundsList,
InterpolationType,
PhaseDynamics,
)
def custom_x_bounds_min(current_shooting_point: int, n_elements: int, n_shooting: int, slicer: slice) -> np.ndarray:
"""
The custom function for the x bound (this particular one mimics linear interpolation)
Parameters
----------
current_shooting_point: int
The current point to return the value, it is defined between [0; n_shooting] for the states
and [0; n_shooting[ for the controls
n_elements: int
The number of rows of the matrix
n_shooting: int
The number of shooting point
slicer: slice
Which rows to use
Returns
-------
The vector value of the bounds at current_shooting_point
"""
my_values = np.array([[-10, -5]] * n_elements)
# Linear interpolation created with custom function
return my_values[slicer, 0] + (my_values[slicer, -1] - my_values[slicer, 0]) * current_shooting_point / n_shooting
def custom_x_bounds_max(current_shooting_point: int, n_elements: int, n_shooting: int, slicer: slice) -> np.ndarray:
"""
The custom function for the x bound (this particular one mimics linear interpolation)
Parameters
----------
current_shooting_point: int
The current point to return the value, it is defined between [0; n_shooting] for the states
and [0; n_shooting[ for the controls
n_elements: int
The number of rows of the matrix
n_shooting: int
The number of shooting point
slicer: slice
Which rows to use
Returns
-------
The vector value of the bounds at current_shooting_point
"""
my_values = np.array([[10, 5]] * n_elements)
# Linear interpolation created with custom function
return my_values[slicer, 0] + (my_values[slicer, -1] - my_values[slicer, 0]) * current_shooting_point / n_shooting
def custom_u_bounds_min(current_shooting_point: int, n_elements: int, n_shooting: int) -> np.ndarray:
"""
The custom function for the x bound (this particular one mimics linear interpolation)
Parameters
----------
current_shooting_point: int
The current point to return the value, it is defined between [0; n_shooting] for the states
and [0; n_shooting[ for the controls
n_elements: int
The number of rows of the matrix
n_shooting: int
The number of shooting point
Returns
-------
The vector value of the bounds at current_shooting_point
"""
my_values = np.array([[-20, -10]] * n_elements)
# Linear interpolation created with custom function
return my_values[:, 0] + (my_values[:, -1] - my_values[:, 0]) * current_shooting_point / n_shooting
def custom_u_bounds_max(current_shooting_point: int, n_elements: int, n_shooting: int) -> np.ndarray:
"""
The custom function for the x bound (this particular one mimics linear interpolation)
Parameters
----------
current_shooting_point: int
The current point to return the value, it is defined between [0; n_shooting] for the states
and [0; n_shooting[ for the controls
n_elements: int
The number of rows of the matrix
n_shooting: int
The number of shooting point
Returns
-------
The vector value of the bounds at current_shooting_point
"""
my_values = np.array([[20, 10]] * n_elements)
# Linear interpolation created with custom function
return my_values[:, 0] + (my_values[:, -1] - my_values[:, 0]) * current_shooting_point / n_shooting
def prepare_ocp(
biorbd_model_path: str,
n_shooting: int,
final_time: float,
interpolation_type: InterpolationType = InterpolationType.CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT,
phase_dynamics: PhaseDynamics = PhaseDynamics.SHARED_DURING_THE_PHASE,
expand_dynamics: bool = True,
) -> OptimalControlProgram:
"""
Prepare the ocp for the specified interpolation type
Parameters
----------
biorbd_model_path: str
The path to the biorbd model
n_shooting: int
The number of shooting point
final_time: float
The movement time
interpolation_type: InterpolationType
The requested InterpolationType
phase_dynamics: PhaseDynamics
If the dynamics equation within a phase is unique or changes at each node.
PhaseDynamics.SHARED_DURING_THE_PHASE is much faster, but lacks the capability to have changing dynamics within
a phase. A good example of when PhaseDynamics.ONE_PER_NODE should be used is when different external forces
are applied at each node
expand_dynamics: bool
If the dynamics function should be expanded. Please note, this will solve the problem faster, but will slow down
the declaration of the OCP, so it is a trade-off. Also depending on the solver, it may or may not work
(for instance IRK is not compatible with expanded dynamics)
Returns
-------
The OCP fully prepared and ready to be solved
"""
# BioModel path
bio_model = BiorbdModel(biorbd_model_path)
nq = bio_model.nb_q
nqdot = bio_model.nb_qdot
ntau = bio_model.nb_tau
tau_min, tau_max = -100, 100
# Add objective functions
objective_functions = Objective(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau")
# Dynamics
dynamics = Dynamics(DynamicsFcn.TORQUE_DRIVEN, expand_dynamics=expand_dynamics, phase_dynamics=phase_dynamics)
# Constraints
constraints = ConstraintList()
constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS, node=Node.START, first_marker="m0", second_marker="m1")
constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS, node=Node.END, first_marker="m0", second_marker="m2")
# Path constraints
if interpolation_type == InterpolationType.CONSTANT:
# Here we need to use the .add nomenclature because interpolation is not the default
x_bounds = BoundsList()
x_bounds.add("q", min_bound=[-100] * nq, max_bound=[100] * nq, interpolation=InterpolationType.CONSTANT)
x_bounds.add(
"qdot", min_bound=[-100] * nqdot, max_bound=[100] * nqdot, interpolation=InterpolationType.CONSTANT
)
u_bounds = BoundsList()
u_bounds.add(
"tau", min_bound=[tau_min] * ntau, max_bound=[tau_max] * ntau, interpolation=InterpolationType.CONSTANT
)
elif interpolation_type == InterpolationType.CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT:
# Here we can use the direct variable assignment because no extra parameters are sent
x_min = np.random.random((6, 3)) * (-10) - 5
x_max = np.random.random((6, 3)) * 10 + 5
x_bounds = BoundsList()
x_bounds["q"] = x_min[:nq, :], x_max[:nq, :]
x_bounds["qdot"] = x_min[nq:, :] * nqdot, x_max[nq:, :]
u_min = np.random.random((3, 3)) * tau_min + tau_min / 2
u_max = np.random.random((3, 3)) * tau_max + tau_max / 2
u_bounds = BoundsList()
u_bounds["tau"] = u_min, u_max
elif interpolation_type == InterpolationType.LINEAR:
# Here we need to use the .add nomenclature because interpolation is not the default
x_min = np.random.random((6, 2)) * (-10) - 5
x_max = np.random.random((6, 2)) * 10 + 5
x_bounds = BoundsList()
x_bounds.add("q", min_bound=x_min[:nq, :], max_bound=x_max[:nq, :], interpolation=InterpolationType.LINEAR)
x_bounds.add(
"qdot", min_bound=x_min[nq:, :] * nqdot, max_bound=x_max[nq:, :], interpolation=InterpolationType.LINEAR
)
u_min = np.random.random((3, 2)) * tau_min + tau_min / 2
u_max = np.random.random((3, 2)) * tau_max + tau_max / 2
u_bounds = BoundsList()
u_bounds.add("tau", min_bound=u_min, max_bound=u_max, interpolation=InterpolationType.LINEAR)
elif interpolation_type == InterpolationType.EACH_FRAME:
# Here we need to use the .add nomenclature because interpolation is not the default
x_min = np.random.random((nq + nqdot, n_shooting + 1)) * (-10) - 5
x_max = np.random.random((nq + nqdot, n_shooting + 1)) * 10 + 5
x_bounds = BoundsList()
x_bounds.add("q", min_bound=x_min[:nq, :], max_bound=x_max[:nq, :], interpolation=InterpolationType.EACH_FRAME)
x_bounds.add(
"qdot", min_bound=x_min[nq:, :] * nqdot, max_bound=x_max[nq:, :], interpolation=InterpolationType.EACH_FRAME
)
u_min = np.random.random((ntau, n_shooting)) * tau_min + tau_min / 2
u_max = np.random.random((ntau, n_shooting)) * tau_max + tau_max / 2
u_bounds = BoundsList()
u_bounds.add("tau", min_bound=u_min, max_bound=u_max, interpolation=InterpolationType.EACH_FRAME)
elif interpolation_type == InterpolationType.SPLINE:
# Here we need to use the .add nomenclature because interpolation is not the default
spline_time = np.hstack((0, np.sort(np.random.random((3,)) * final_time), final_time))
x_min = np.random.random((nq + nqdot, 5)) * (-10) - 5
x_max = np.random.random((nq + nqdot, 5)) * 10 + 5
x_bounds = BoundsList()
x_bounds.add(
"q", min_bound=x_min[:nq, :], max_bound=x_max[:nq, :], interpolation=InterpolationType.SPLINE, t=spline_time
)
x_bounds.add(
"qdot",
min_bound=x_min[nq:, :] * nqdot,
max_bound=x_max[nq:, :],
interpolation=InterpolationType.SPLINE,
t=spline_time,
)
u_min = np.random.random((ntau, 5)) * tau_min + tau_min / 2
u_max = np.random.random((ntau, 5)) * tau_max + tau_max / 2
u_bounds = BoundsList()
u_bounds.add("tau", min_bound=u_min, max_bound=u_max, interpolation=InterpolationType.SPLINE, t=spline_time)
elif interpolation_type == InterpolationType.CUSTOM:
# The custom functions refer to the ones at the beginning of the file.
# For this particular instance, they emulate a Linear interpolation
extra_params_x = {"n_elements": nq + nqdot, "n_shooting": n_shooting}
x_bounds = BoundsList()
x_bounds.add(
"q",
min_bound=custom_x_bounds_min,
max_bound=custom_x_bounds_max,
interpolation=InterpolationType.CUSTOM,
slicer=slice(0, nq),
**extra_params_x,
)
x_bounds.add(
"qdot",
min_bound=custom_x_bounds_min,
max_bound=custom_x_bounds_max,
interpolation=InterpolationType.CUSTOM,
slicer=slice(nq, nq + nqdot),
**extra_params_x,
)
extra_params_u = {"n_elements": ntau, "n_shooting": n_shooting}
u_bounds = BoundsList()
u_bounds.add(
"tau",
min_bound=custom_u_bounds_min,
max_bound=custom_u_bounds_max,
interpolation=InterpolationType.CUSTOM,
**extra_params_u,
)
else:
raise NotImplementedError("Not implemented yet")
return OptimalControlProgram(
bio_model,
dynamics,
n_shooting,
final_time,
x_bounds,
u_bounds,
objective_functions=objective_functions,
constraints=constraints,
)
def main():
"""
Show all the InterpolationType implemented in bioptim
"""
print(f"Show the bounds")
for interpolation_type in InterpolationType:
if interpolation_type == InterpolationType.ALL_POINTS:
continue
print(f"Solving problem using {interpolation_type} bounds")
ocp = prepare_ocp("models/cube.bioMod", n_shooting=30, final_time=2, interpolation_type=interpolation_type)
sol = ocp.solve()
print("\n")
# Print the last solution
sol.graphs(show_bounds=True)
if __name__ == "__main__":
main()