-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinfer.py
73 lines (57 loc) · 2.55 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
from model.make_longformer import *
from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration
def load_model(model_ckpt, tokenizer_ckpt):
if "YoYak" in model_ckpt:
model = LongformerBartForConditionalGeneration.from_pretrained(model_ckpt)
tokenizer = PreTrainedTokenizerFast.from_pretrained(tokenizer_ckpt)
else :
model = BartForConditionalGeneration.from_pretrained(model_ckpt)
tokenizer = PreTrainedTokenizerFast.from_pretrained(tokenizer_ckpt)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model.to(device)
model.eval()
return model, tokenizer, device
def summarize_batch_infer(
text_list,
model,
tokenizer,
device,
target_max_length=1024,
source_max_len = 4096,
num_beams=5) :
padding_idx = 3
text_list = [text + "</s>" for text in text_list] # end token 추가
input_ids = tokenizer(text_list, return_tensors = "pt", truncation = True, padding = True, max_length = 555).input_ids
if input_ids.size()[1] < target_max_length:
pad_tensor = torch.full(size = (input_ids.size()[0], source_max_len - input_ids.size()[1]), fill_value = padding_idx)
input_ids = torch.cat((input_ids, pad_tensor), dim = 1)
else:
input_ids = input_ids[:, :target_max_length] # input 형태에 따라 맞춰주어야 함
input_ids = input_ids.to(device)
output = model.generate(input_ids, eos_token_id=1, max_length=target_max_length, num_beams=num_beams)
output = tokenizer.batch_decode(output, skip_special_tokens=True)
output = [text + "\n" for text in output]
return output
def summarize_infer(
text,
model,
tokenizer,
device,
max_length=1024,
num_beams=5):
source_max_len = 4096
padding_idx = 3
text += "</s>" # end token 추가
input_ids = tokenizer.encode(text)
input_ids += [padding_idx] * (source_max_len-len(input_ids))
input_ids = torch.tensor(input_ids, device=device)
input_ids = input_ids.unsqueeze(0) # input 형태에 따라 맞춰주어야 함
output = model.generate(input_ids, eos_token_id=1, max_length=max_length, num_beams=num_beams)
output = tokenizer.decode(output[0], skip_special_token=True)
return output
if __name__ == "__main__":
text = "안녕하세요"
model, tokenizer, device = load_model(model_ckpt='model/longformer_kobart_initial_ckpt', tokenizer_ckpt = "model/longformer_kobart_initial_ckpt")
output = summarize_infer(text, model = model, tokenizer = tokenizer, device = device)
print(output)