-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
61 lines (46 loc) · 1.97 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# References:
# https://github.com/omihub777/ViT-CIFAR/blob/main/criterions.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import config
class CELossWithLabelSmoothing(nn.Module):
def __init__(self, n_classes, smoothing=0):
super().__init__()
assert 0 <= smoothing <= 1, "The argument `smoothing` must be between 0 and 1!"
self.n_classes = n_classes
self.smoothing = smoothing
def forward(self, pred, gt):
if gt.ndim == 1:
gt = torch.eye(self.n_classes, device=gt.device)[gt]
return self(pred, gt)
elif gt.ndim == 2:
log_prob = F.log_softmax(pred, dim=1)
ce_loss = -torch.sum(gt * log_prob, dim=1)
loss = (1 - self.smoothing) * ce_loss
loss += self.smoothing * -torch.sum(log_prob, dim=1)
return torch.mean(loss)
class ClassificationLoss(nn.Module):
def __init__(self, n_classes, smoothing=0):
super().__init__()
assert 0 <= smoothing <= 1, "The argument `smoothing` must be between 0 and 1!"
self.n_classes = n_classes
self.smoothing = smoothing
self.ce = nn.CrossEntropyLoss(reduction="sum")
def forward(self, pred, gt):
if gt.ndim == 1:
new_gt = torch.full_like(pred, fill_value=self.smoothing / (self.n_classes - 1))
new_gt.scatter_(1, gt.unsqueeze(1), 1 - self.smoothing)
elif gt.ndim == 2:
new_gt = gt.clone()
new_gt.sum(dim=1)
new_gt *= (1 - self.smoothing)
is_zero = (gt == 0)
likelihood = self.smoothing / (gt.shape[1] - (~is_zero).sum(dim=1))
new_gt += is_zero * likelihood.unsqueeze(1).repeat(1, self.n_classes)
loss = self.ce(pred, new_gt)
return loss
if __name__ == "__main__":
# crit = ClassificationLoss(n_classes=config.N_CLASSES, smoothing=config.SMOOTHING)
crit = ClassificationLoss(n_classes=config.N_CLASSES)
crit(pred, gt)