-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_analysis_unused_early_years_paired_ttest_1-23-2014.py
302 lines (246 loc) · 14.8 KB
/
main_analysis_unused_early_years_paired_ttest_1-23-2014.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
"""
filename: main_analysis_pandas_version_unused_early_years.py
description: This code runs linear regressions
inputs:
outputs:
12/20/2013:
* For categorical variables, maybe count them as sig if more than half of the coeffs
are signif. Need to see how categorical are dummy-ized to know which p-values to
grab.
notes/to-do's:
- TODO 9/23/2013:
- why are the coefficient sizes so big???
- probably because some columns are constant?! so when there's no variation, can multiply even by a huge constant
and there's little effect?...
- insert code to remove missing values!!!
- specifically, the lower/higher ranges
- speed up code
- can be done by creating a design matrix with one column (the first) missing (for the DV) in the block of code
before the "for each DV" if not earlier
- PROBABLY NEED TO CONVER THE WHOLE THING TO A PANEL OF DATAFRAMES
- figure out how to run multinomial logit?!
- figure out a better way to extract the right p-values and coefficients from the results
- since the categoricals aren't centered, if the coefficients are of different sizes right now, that may be due simply
to there being more "years possible".. if categorical coeffs tend to be of different sizes than cardinals..
- Coefficient sizes
- JE wants to center the variables and normalize them, to see coefficient size
Created on Sun Sep 01 15:55:48 2013
@author: Misha
"""
from __future__ import division
import cPickle as cp
import pandas as pd
import savReaderWriter as srw
import numpy as np
import statsmodels.formula.api as smf
import random, sys
# global variables
# i am taking out year 1984 for now because i don't have variables data on it! need to log in to commander.uchicago.edu
# and create a text file from variable view from that year's GSS...
GSS_YEARS = [1972, 1973, 1974, 1975, 1976, 1977, 1978,
1980, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989,
1990, 1991, 1993, 1994, 1996, 1998,
2000, 2002, 2004, 2006, 2008, 2010, 2012]
# LOAD FILES ########################################################################
'''
sys.path.append('../Code/')
from articleClass import *
pathToData = '../Data/'
ALL_VARIABLE_NAMES = cp.load(open(pathToData + 'ALL_VARIABLE_NAMES.pickle'))
ALL_VARIABLE_NAMES = [str.upper(el) for el in ALL_VARIABLE_NAMES]
MISSING_VALUES_DICT = cp.load(open(pathToData + 'MISSING_VALUES_DICT.pickle', 'rb'))
MEASURE_LEVELS = cp.load(open(pathToData + 'MEASURE_LEVELS.pickle'))
articleIDAndGSSYearsUsed = cp.load(open(pathToData + 'articleIDAndGssYearsUsed-cleaned.pickle')) # load the years used
VARS_BY_YEAR = cp.load(open(pathToData + 'VARS_BY_YEAR.pickle'))
# structure of the dictionary above: { year (int) : [ set of variable names (strs), [variable_i, metadata_i] ] }
YEAR_INDICES = cp.load(open(pathToData + 'YEAR_INDICES.pickle'))
VAR_INDICES = cp.load(open(pathToData + 'VAR_INDICES_binary.pickle', 'rb'))
articleClasses = cp.load(open(pathToData + 'articleClasses.pickle', 'rb'))
# load GSS data
GSSFilename = 'GSS Dataset/GSS7212_R2.sav'
data = srw.SavReader(pathToData + GSSFilename)
df = pd.DataFrame(data.all(), index=data[:,0], columns=ALL_VARIABLE_NAMES)
with data: # this makes sure the file will be closed, memory cleaned up after the program is run
data = np.array(data.all()) # this makes sure the entire dataset is loaded into RAM, which makes accessing much faster
'''
from collections import defaultdict
output = defaultdict(dict)
groups = ['group1', 'group2']
outcomes = ['propSig', 'paramSizesNormed', 'Rs', 'adjRs', 'pvalues', 'numTotal']
for group in groups:
for outcome in outcomes:
output[group][outcome] = []
allPropsForYearsUsed = []
allPropsForYearsPossible =[]
allParamSizesForYearsUsed = []
allParamSizesForYearsPossible = []
allRsForYearsUsed, allRsForYearsPossible = [], []
# begin estimating models
#for article in random.sample(articleClasses, 200):
for article in articleClasses:
#for article in [a for a in articleClasses if a.articleID == 4454]:
print 'Processing article:', article.articleID
#####I am going to make this check later, when I assign estimates to different groups
# check if there are any unused "early" years
if len(article.GSSYearsPossible) == 0 or min(article.GSSYearsPossible) > max(article.GSSYearsUsed):
print 'Article has no unused early years'
continue
else: # only keep the EARLY unused years, not the later waves of the survey
article.GSSYearsPossible = [yr for yr in article.GSSYearsPossible if yr < max(article.GSSYearsUsed)]
#article.GSSYearsPossible = [yr for yr in article.GSSYearsPossible if yr < max(article.GSSYearsUsed)]
'''
# Only process articles with "central IVs" defined?
if len(article.centralIVs) < 1:
print 'No "central" IVs. Skipping'
continue
'''
# coefficients significant
td = defaultdict(dict)
for group in groups:
td[group]['numTotal'] = 0.0
# td[group]['coeffsSig'] = []
td[group]['numSig'] = 0.0 # proportions of significant coeffs
# td[group]['paramSizes'] = []
td[group]['paramSizesNormed'] = []
td[group]['Rs'] = []
td[group]['adjRs'] = []
td[group]['pvalues'] = []
'''
# parameter sizes
paramSizesForYearsUsed = []
paramSizesForYearsPossible = []
avgParamSizeForYearsUsed = 0.0
avgParamSizeForYearsPossible = 0.0
avgParamSizesNormedForYearsUsed, avgParamSizesNormedForYearsPossible = 0.0, 0.0
RsForYearsUsed, RsForYearsPossible = [], []
adjRsForYearsUsed, adjRsForYearsPossible = [], []
pvaluesForYearsUsed, pvaluesForYearsPossible = [], []
'''
for year in (article.GSSYearsUsed + article.GSSYearsPossible): # for each GSS year the article used or could've used
for DV in article.DVs: # for each model
design = df.loc[year, [DV]+article.IVs+article.controls].copy(deep=True) # Need to make a deep copy so that original df isn't changed
# MISSING VALUES
for col in design.columns:
mv = MISSING_VALUES_DICT[col]
# if discrete missing values, replace them with np.nan
if 'values' in mv:
design[col].replace(mv['values'], [np.nan]*len(mv['values']), inplace=True) # it's important to have inPlace=True
# if range of missing values [lower, upper] is given
elif 'lower' in mv:
design[col][np.array(design[col] > mv['lower']) * np.array(design[col] < mv['upper'])] = np.nan
# if there is a range, there is also always (?) a discrete value designated as missing
if 'value' in mv:
design[col].replace(mv['value'], np.nan, inplace=True) # it's important to have inPlace=True
design = design.dropna(axis=0) # drop all rows with any missing values (np.nan)
# remove columns that are constant; if DV is constant, skip to next model
# this needs to come after the step above because some columns will be constant
# only after all the missing value-rows are removed
if len(design[DV].unique()) == 1: continue # if DV constant
for col in design.columns:
if len(design[col].unique()) == 1: # if any IVs or controls constant, drop 'em
print 'Dropping column', col, 'because it is constant'
design = design.drop(col, axis=1) # inplace=True option not available because i'm using an old Pandas package?
#need to make sure there are still IVs left after we dropped some above
if design.shape[1] < 2:
print 'no IVs available. Skipping.'
continue
# skip if there's not enough data after deleting rows
# PROBLEM: dummy-ing categorical variables produces many more columns,
# so the question is if there is enough data AFTER dummy-ing..
if design.shape[0] < design.shape[1]: # if number of rows is less than number of columns
print 'Not enough observations. Skipping...'
continue
'''
# create formula
formula = DV + ' ~ '
for col in design.columns[1:]: # don't include the DV in the RHS!
if MEASURE_LEVELS[col] == 'ratio': formula += 'center('+ col + ')' # only center() if it's a ratio?
else: formula += ' C(' + col + ')' # i shouldn't center() this?
formula += ' + '
formula = formula[:-2]
'''
# create formula
formula = DV + ' ~ '
for col in design.columns[1:]: # don't include the DV in the RHS!
formula += 'standardize('+ col + ', ddof=1) + ' # normalize the coefficients?
formula = formula[:-2] # remove the last plus sign
# calculate the results
results = smf.ols(formula, data=design, missing='drop').fit() # do I need the missing='drop' part?
# QUALITY CHECK!!!: a check on abnormal results
if (abs(results.params) > 10000).any() or results.rsquared > 0.98:
print 'Either the params or the R^2 is too high. Skipping.'
print year, article.articleID
continue
# this has happened becaseuse the formula had 'DENOM ~ DENOM16', and correlation was 1.0
if np.isnan(results.params).any():
raise
# figure out which group the current model is in
# if year in article.GSSYearsUsed: group = 'group1'
# else: group = 'group2'
# if the article used all of the possible data, it's group 1
# if it didn't use some of the e
########################################################## KEY STEP #######################
# DEFINE WHICH GROUP THE ESTIMATE WILL GO INTO
if year in article.GSSYearsUsed: group = 'group1'
elif year in article.GSSYearsPossible: group = 'group2'
else: continue
print 'Year used: ', year
td[group]['Rs'].append(results.rsquared)
td[group]['adjRs'].append(results.rsquared_adj)
td[group]['numTotal'] += len(results.params[1:])
td[group]['numSig'] += float(len([p for p in results.pvalues[1:] if p < 0.05])) # start at 1 because don't want to count the constant
td[group]['paramSizesNormed'].append(results.params[1:].abs().mean()) # get the absolute value of the standardized coefficients and take the mean
td[group]['pvalues'].append(results.pvalues[1:].mean())
# should need the 2nd condition here because i limited GSSYearsUsed above..
# elif year in article.GSSYearsPossible and year < max(article.GSSYearsUsed): # the GSS year the models were run on is a "new" year, (wasn't used in article)
# for iv in article.centralIVs:
# if iv in col:
# coeffsTotalForYearsPossible += 1
'''
#only count CENTRAL IVs
coeffsSigForYearsPossible.extend([el for el in results.pvalues[indicesOfCentralIVs] if el < 0.05]) # start at 1 because don't want to count the constant
coeffsTotalForYearsPossible += len(article.centralIVs)
paramSizesForYearsPossible.extend(results.params[indicesOfCentralIVs])
'''
# if an article's model isn't run on both UNUSED EARLY YEARS and USED years, then skip it
if td['group1']['numTotal'] == 0 or td['group2']['numTotal'] == 0: continue
if td['group1']['numTotal'] != 0:
group = 'group1'
output[group]['Rs'].append( np.mean(td[group]['Rs']))
output[group]['adjRs'].append(np.mean( td[group]['adjRs']))
output[group]['propSig'].append( td[group]['numSig']/td[group]['numTotal'])
output[group]['paramSizesNormed'].append(np.mean( td[group]['paramSizesNormed']))
output[group]['pvalues'].append(np.mean( td[group]['pvalues']))
output[group]['numTotal'].append(td[group]['numTotal'] / len(td[group]['Rs'])) #divide by len of R^2 array to get a mean of variables estimated PER model
# propSigForYearsUsed = float(len(coeffsSigForYearsUsed)) / coeffsTotalForYearsUsed
# allPropsForYearsUsed.append(propSigForYearsUsed)
# allParamSizesForYearsUsed.append( np.mean(paramSizesForYearsUsed))
if td['group2']['numTotal'] != 0:
group = 'group2'
output[group]['Rs'].append( np.mean(td[group]['Rs']))
output[group]['adjRs'].append(np.mean( td[group]['adjRs']))
output[group]['propSig'].append( td[group]['numSig']/td[group]['numTotal'])
output[group]['paramSizesNormed'].append(np.mean( td[group]['paramSizesNormed']))
output[group]['pvalues'].append(np.mean( td[group]['pvalues']))
output[group]['numTotal'].append(td[group]['numTotal'] / len(td[group]['Rs'])) #divide by len of R^2 array to get a mean of variables estimated PER model
# allRsForYearsPossible.append( np.mean(RsForYearsPossible) )
# propSigForYearsPossible = float(len(coeffsSigForYearsPossible)) / coeffsTotalForYearsPossible
# allPropsForYearsPossible.append(propSigForYearsPossible)
# allParamSizesForYearsPossible.append( np.mean(paramSizesForYearsPossible))
# should i put a delete command for data here?
'''
cp.dump(allPropsForYearsPossible, open(pathToData + 'allPropsForYearsPossible.pickle', 'wb'))
cp.dump(allPropsForYearsUsed, open(pathToData + 'allPropsForYearsUsed.pickle', 'wb'))
'''
# The comparisons to make:
# 1. Proportion of coefficients that are significant
from scipy.stats import ttest_ind, ttest_rel
'''
print np.mean(allPropsForYearsUsed), np.mean(allPropsForYearsPossible), 'ttest of Props Sig:', ttest_ind(allPropsForYearsUsed, allPropsForYearsPossible, equal_var=False)
print np.mean(allRsForYearsUsed), np.mean(allRsForYearsPossible), 'ttest of R sizes:', ttest_ind(allRsForYearsUsed, allRsForYearsPossible, equal_var=False)
print np.mean(allParamSizesForYearsUsed), np.mean(allParamSizesForYearsPossible), 'ttest of Param Sizes:', ttest_ind(allParamSizesForYearsUsed, allParamSizesForYearsPossible, equal_var=False)
'''
print 'TTests'
for outcome in outcomes:
if outcome == 'paramSizes': continue
print 'Means of group1 and group2:', np.mean(output['group1'][outcome]), np.mean(output['group2'][outcome]), 'Paired T-test of ' + outcome, ttest_rel(output['group1'][outcome], output['group2'][outcome])