-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4dc28ba
commit 62ddf20
Showing
1 changed file
with
78 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
import os | ||
import glob | ||
import pandas as pd | ||
from src.objects.func_tree import FuncTreeEmduInput | ||
import src.factory.make_tree as make_tree | ||
import src.factory.make_emd_input as make_emd_input | ||
from src.algorithms.emd_unifrac import EarthMoverDistanceUniFracSolver | ||
import numpy as np | ||
from sklearn.metrics import silhouette_score | ||
|
||
|
||
RAND_TREE = 'data/kegg_trees/fununifrac_edge_lengths_kegg_ko00001_randomized_method.csv' | ||
UNIFORM_TREE = 'data/kegg_trees/kegg_ko00001_edge_length_1.txt' | ||
DETERMINISTIC_TREE = 'data/kegg_trees/kegg_ko00001_scaled_10_k_5_assigned_positivity_enforced.txt' | ||
BRITE = 'ko00001' | ||
|
||
metadata_file = 'data/simulated_data/simulated_metadata.csv' | ||
trees = { | ||
RAND_TREE: 'randomized_tree', | ||
UNIFORM_TREE: 'uniform_tree', | ||
DETERMINISTIC_TREE: 'deterministic_tree', | ||
} | ||
input_dir = 'data/simulated_data' | ||
similarity_levels = ['high', 'medium', 'low'] | ||
meta = pd.read_csv(metadata_file) | ||
meta_dict = dict(zip(meta['sample'], meta['env'])) | ||
print(meta_dict) | ||
|
||
def make_fununifrac_inputs(raw_P, input, normalize=True): | ||
#convert an array into one that's suitable for use | ||
EMDU_index_2_node = input.idx_to_node | ||
node_2_EMDU_index = {v: k for k, v in EMDU_index_2_node.items()} | ||
if normalize: | ||
raw_P = raw_P/raw_P.sum() | ||
P = np.zeros(len(EMDU_index_2_node)) | ||
for ko in raw_P.index: | ||
if ko not in node_2_EMDU_index: | ||
print(f"Warning: {ko} not found in EMDU index, skipping.") | ||
else: | ||
P_index = node_2_EMDU_index[ko] | ||
P[P_index] = raw_P[ko] | ||
return P | ||
|
||
def compute_pw_fununifrac(tree_path, dataframe_file): | ||
#compute pw_fununifrac of 1 file | ||
solver = EarthMoverDistanceUniFracSolver() | ||
tree = make_tree.import_graph(tree_path, directed=True) | ||
input: FuncTreeEmduInput = make_emd_input.tree_to_EMDU_input(tree, BRITE) | ||
sample_df = pd.read_csv(dataframe_file, index_col='name') | ||
Ps_pushed = {} | ||
for col in sample_df.columns: | ||
P = make_fununifrac_inputs(sample_df[col], input) | ||
P_pushed = solver.push_up_L1(P, input) | ||
Ps_pushed[col] = P_pushed | ||
dists, diffabs_sparse = solver.pairwise_computation(Ps_pushed, sample_df.columns, input, False, False) | ||
return dists, sample_df.columns | ||
|
||
for sim in similarity_levels: | ||
df_dict = { | ||
'tree': [], | ||
'score': [], | ||
} | ||
files = glob.glob(f"sim_*{sim}.csv") | ||
for tree in trees: | ||
for file in files: | ||
dist_matrix, sample_ids = compute_pw_fununifrac(tree, file) | ||
labels = [meta_dict[i] for i in sample_ids] | ||
sil_score = silhouette_score(dist_matrix, labels, metric='precomputed') | ||
df_dict['tree'].append(trees[tree]) | ||
df_dict['score'].append(sil_score) | ||
df = pd.DataFrame.from_dict(df_dict) | ||
print(df) | ||
out_file_name = f"data/simulated_data/df_{sim}_{trees[tree]}" | ||
df.to_csv(out_file_name, sep='\t') | ||
|
||
|
||
|
||
|