-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_track.py
125 lines (96 loc) · 4.64 KB
/
detect_track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#Import the OpenCV and dlib libraries
import cv2
import dlib
import os
import time
from helper import facial_landmarks, face_aligner
import imutils
#faceCascade = cv2.CascadeClassifier('/usr/local/lib/python2.7/dist-packages/cv2/data/haarcascade_frontalface_default.xml')
detector = dlib.get_frontal_face_detector()
#The deisred output width and height
OUTPUT_SIZE_WIDTH = 775
OUTPUT_SIZE_HEIGHT = 600
PATH2 = 'cohn-kanade-images/'
PATH3 = 'Faces/'
def detectAndTrackLargestFace():
#Create two opencv named windows
cv2.namedWindow("base-image", cv2.WINDOW_AUTOSIZE)
cv2.namedWindow("result-image", cv2.WINDOW_AUTOSIZE)
cv2.moveWindow("base-image",0,100)
cv2.moveWindow("result-image",400,100)
cv2.startWindowThread()
#Create the tracker we will use
tracker = dlib.correlation_tracker()
rectangleColor = (0,165,255)
i = 0
try:
for imagefile in sorted(os.listdir(PATH2)):
os.mkdir(PATH3+imagefile, 0777)
for folder in sorted(os.listdir(PATH2+imagefile+'/')):
if(folder == '_DS_Store'):
continue
os.mkdir(PATH3+imagefile+'/'+folder, 0777)
trackingFace = 0
for imagename in sorted(os.listdir(PATH2+imagefile+'/'+folder+'/')):
if(imagename == '_DS_Store'):
continue
temp_path = PATH3+imagefile+'/'+folder+'/'
fullSizeBaseImage = cv2.imread(PATH2+imagefile+'/'+folder+'/'+imagename)
#fullSizeBaseImage = imutils.rotate_bound(fullSizeBaseImage, -15)
#fullSizeBaseImage = cv2.flip(fullSizeBaseImage, 1)
#Resize the image to 320x240
baseImage = cv2.resize( fullSizeBaseImage, ( 320, 240))
pressedKey = cv2.waitKey(2)
if pressedKey == ord('Q'):
cv2.destroyAllWindows()
exit(0)
resultImage = baseImage.copy()
if not trackingFace:
gray = cv2.cvtColor(baseImage, cv2.COLOR_BGR2GRAY)
faces = detector(gray, 1)
print("Using the cascade detector to detect face")
maxArea = 0
x = 0
y = 0
w = 0
h = 0
for face in faces:
if (face.right() - face.left())*(face.bottom() - face.top()) > maxArea:
x = face.left()
y = face.top()
w = face.right() - x
h = face.bottom() - y
maxArea = w*h
if maxArea > 0 :
#Initialize the tracker
tracker.start_track(baseImage,
dlib.rectangle( x-10,
y-20,
x+w+10,
y+h+20))
trackingFace = 1
if trackingFace:
trackingQuality = tracker.update( baseImage )
if trackingQuality >= 8.75:
tracked_position = tracker.get_position()
t_x = int(tracked_position.left())
t_y = int(tracked_position.top())
t_w = int(tracked_position.width())
t_h = int(tracked_position.height())
dlib_rect = dlib.rectangle(t_x, t_y, t_x+t_w, t_y+t_h)
cropped_image = resultImage[t_y : t_y+t_h, t_x : t_x+t_w]
cv2.imwrite(temp_path+imagename, cropped_image)
#cv2.rectangle(resultImage, (t_x, t_y), (t_x + t_w , t_y + t_h), rectangleColor ,1)
i+=1
else:
trackingFace = 0
largeResult = cv2.resize(resultImage,
(OUTPUT_SIZE_WIDTH,OUTPUT_SIZE_HEIGHT))
#Finally, we want to show the images on the screen
cv2.imshow("base-image", baseImage)
cv2.imshow("result-image", largeResult)
except KeyboardInterrupt as e:
cv2.destroyAllWindows()
exit(0)
if __name__ == '__main__':
detectAndTrackLargestFace()