-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_data_net2.py
63 lines (52 loc) · 1.58 KB
/
prepare_data_net2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import cv2
import dlib
import numpy as np
from keras.preprocessing import image
from helper import facial_landmarks
PATH2 = 'Normalized-Flipped/'
PATH1 = 'Emotion/'
# Emotion contains the labels for the examples in a file corresponding to the name of last frame of the example
def normalize(point, std, nose):
a = (point - nose)/std
return a
for imagefile in sorted(os.listdir(PATH2)):
for folder in sorted(os.listdir(PATH2+imagefile+'/')):
label_path = PATH1+imagefile+'/'+folder+'/'
b = len(os.listdir(label_path))
X = np.empty((612, 1))
i=0
if(b==0):
print(len(os.listdir(PATH5+imagefile+'/'+folder+'/')))
continue
file = open(label_path+os.listdir(label_path)[0])
label = file.read()[3]
for imagename in sorted(os.listdir(PATH2+imagefile+'/'+folder+'/')):
img = cv2.imread(PATH2+imagefile+'/'+folder+'/'+imagename)
img = cv2.resize(img, (64, 64))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
dlib_rect = dlib.rectangle(0, 0, 64, 64)
fac = facial_landmarks(img, dlib_rect)[17:]
a = np.empty((51))
b = np.empty((51))
j=0
for (x, y) in fac:
a[j] = x
b[j] = y
j+=1
nose_x = a[13]
nose_y = b[13]
x_noise = np.random.normal(0, 0.01, 51)
y_noise = np.random.normal(0, 0.01, 51)
j=0
a = np.std(a, dtype = np.float64)
b = np.std(b, dtype = np.float64)
for (x, y) in fac:
Y[i] = normalize(x, a, nose_x) + x_noise[j]
i+=1
Y[i] = normalize(y, b, nose_y) + y_noise[j]
i+=1
j+=1
name = imagename
# Different names for different types of augmentation
np.save(label+'g/'+'flno3'+name[:-4], X)