-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
app_animals.py
249 lines (222 loc) · 11.1 KB
/
app_animals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# coding: utf-8
"""
The entrance of the gradio for animal
"""
import os
import tyro
import subprocess
import gradio as gr
import os.path as osp
from src.utils.helper import load_description
from src.gradio_pipeline import GradioPipelineAnimal
from src.config.crop_config import CropConfig
from src.config.argument_config import ArgumentConfig
from src.config.inference_config import InferenceConfig
def partial_fields(target_class, kwargs):
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
def fast_check_ffmpeg():
try:
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
return True
except:
return False
# set tyro theme
tyro.extras.set_accent_color("bright_cyan")
args = tyro.cli(ArgumentConfig)
ffmpeg_dir = os.path.join(os.getcwd(), "ffmpeg")
if osp.exists(ffmpeg_dir):
os.environ["PATH"] += (os.pathsep + ffmpeg_dir)
if not fast_check_ffmpeg():
raise ImportError(
"FFmpeg is not installed. Please install FFmpeg (including ffmpeg and ffprobe) before running this script. https://ffmpeg.org/download.html"
)
# specify configs for inference
inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
gradio_pipeline_animal: GradioPipelineAnimal = GradioPipelineAnimal(
inference_cfg=inference_cfg,
crop_cfg=crop_cfg,
args=args
)
if args.gradio_temp_dir not in (None, ''):
os.environ["GRADIO_TEMP_DIR"] = args.gradio_temp_dir
os.makedirs(args.gradio_temp_dir, exist_ok=True)
def gpu_wrapped_execute_video(*args, **kwargs):
return gradio_pipeline_animal.execute_video(*args, **kwargs)
# assets
title_md = "assets/gradio/gradio_title.md"
example_portrait_dir = "assets/examples/source"
example_video_dir = "assets/examples/driving"
data_examples_i2v = [
[osp.join(example_portrait_dir, "s41.jpg"), osp.join(example_video_dir, "d3.mp4"), True, False, False, False],
[osp.join(example_portrait_dir, "s40.jpg"), osp.join(example_video_dir, "d6.mp4"), True, False, False, False],
[osp.join(example_portrait_dir, "s25.jpg"), osp.join(example_video_dir, "d19.mp4"), True, False, False, False],
]
data_examples_i2v_pickle = [
[osp.join(example_portrait_dir, "s25.jpg"), osp.join(example_video_dir, "wink.pkl"), True, False, False, False],
[osp.join(example_portrait_dir, "s40.jpg"), osp.join(example_video_dir, "talking.pkl"), True, False, False, False],
[osp.join(example_portrait_dir, "s41.jpg"), osp.join(example_video_dir, "aggrieved.pkl"), True, False, False, False],
]
#################### interface logic ####################
# Define components first
output_image = gr.Image(type="numpy")
output_image_paste_back = gr.Image(type="numpy")
output_video_i2v = gr.Video(autoplay=False)
output_video_concat_i2v = gr.Video(autoplay=False)
output_video_i2v_gif = gr.Image(type="numpy")
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Plus Jakarta Sans")])) as demo:
gr.HTML(load_description(title_md))
gr.Markdown(load_description("assets/gradio/gradio_description_upload_animal.md"))
with gr.Row():
with gr.Column():
with gr.Accordion(open=True, label="🐱 Source Animal Image"):
source_image_input = gr.Image(type="filepath")
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s25.jpg")],
[osp.join(example_portrait_dir, "s30.jpg")],
[osp.join(example_portrait_dir, "s31.jpg")],
[osp.join(example_portrait_dir, "s32.jpg")],
[osp.join(example_portrait_dir, "s33.jpg")],
[osp.join(example_portrait_dir, "s39.jpg")],
[osp.join(example_portrait_dir, "s40.jpg")],
[osp.join(example_portrait_dir, "s41.jpg")],
[osp.join(example_portrait_dir, "s38.jpg")],
[osp.join(example_portrait_dir, "s36.jpg")],
],
inputs=[source_image_input],
cache_examples=False,
)
with gr.Accordion(open=True, label="Cropping Options for Source Image"):
with gr.Row():
flag_do_crop_input = gr.Checkbox(value=True, label="do crop (source)")
scale = gr.Number(value=2.3, label="source crop scale", minimum=1.8, maximum=3.2, step=0.05)
vx_ratio = gr.Number(value=0.0, label="source crop x", minimum=-0.5, maximum=0.5, step=0.01)
vy_ratio = gr.Number(value=-0.125, label="source crop y", minimum=-0.5, maximum=0.5, step=0.01)
with gr.Column():
with gr.Tabs():
with gr.TabItem("📁 Driving Pickle") as tab_pickle:
with gr.Accordion(open=True, label="Driving Pickle"):
driving_video_pickle_input = gr.File()
gr.Examples(
examples=[
[osp.join(example_video_dir, "wink.pkl")],
[osp.join(example_video_dir, "shy.pkl")],
[osp.join(example_video_dir, "aggrieved.pkl")],
[osp.join(example_video_dir, "open_lip.pkl")],
[osp.join(example_video_dir, "laugh.pkl")],
[osp.join(example_video_dir, "talking.pkl")],
[osp.join(example_video_dir, "shake_face.pkl")],
],
inputs=[driving_video_pickle_input],
cache_examples=False,
)
with gr.TabItem("🎞️ Driving Video") as tab_video:
with gr.Accordion(open=True, label="Driving Video"):
driving_video_input = gr.Video()
gr.Examples(
examples=[
# [osp.join(example_video_dir, "d0.mp4")],
# [osp.join(example_video_dir, "d18.mp4")],
[osp.join(example_video_dir, "d19.mp4")],
[osp.join(example_video_dir, "d14.mp4")],
[osp.join(example_video_dir, "d6.mp4")],
[osp.join(example_video_dir, "d3.mp4")],
],
inputs=[driving_video_input],
cache_examples=False,
)
tab_selection = gr.Textbox(visible=False)
tab_pickle.select(lambda: "Pickle", None, tab_selection)
tab_video.select(lambda: "Video", None, tab_selection)
with gr.Accordion(open=True, label="Cropping Options for Driving Video"):
with gr.Row():
flag_crop_driving_video_input = gr.Checkbox(value=False, label="do crop (driving)")
scale_crop_driving_video = gr.Number(value=2.2, label="driving crop scale", minimum=1.8, maximum=3.2, step=0.05)
vx_ratio_crop_driving_video = gr.Number(value=0.0, label="driving crop x", minimum=-0.5, maximum=0.5, step=0.01)
vy_ratio_crop_driving_video = gr.Number(value=-0.1, label="driving crop y", minimum=-0.5, maximum=0.5, step=0.01)
with gr.Row():
with gr.Accordion(open=False, label="Animation Options"):
with gr.Row():
flag_stitching = gr.Checkbox(value=False, label="stitching (not recommended)")
flag_remap_input = gr.Checkbox(value=False, label="paste-back (not recommended)")
driving_multiplier = gr.Number(value=1.0, label="driving multiplier", minimum=0.0, maximum=2.0, step=0.02)
gr.Markdown(load_description("assets/gradio/gradio_description_animate_clear.md"))
with gr.Row():
process_button_animation = gr.Button("🚀 Animate", variant="primary")
with gr.Row():
with gr.Column():
with gr.Accordion(open=True, label="The animated video in the cropped image space"):
output_video_i2v.render()
with gr.Column():
with gr.Accordion(open=True, label="The animated gif in the cropped image space"):
output_video_i2v_gif.render()
with gr.Column():
with gr.Accordion(open=True, label="The animated video"):
output_video_concat_i2v.render()
with gr.Row():
process_button_reset = gr.ClearButton([source_image_input, driving_video_input, output_video_i2v, output_video_concat_i2v, output_video_i2v_gif], value="🧹 Clear")
with gr.Row():
# Examples
gr.Markdown("## You could also choose the examples below by one click ⬇️")
with gr.Row():
with gr.Tabs():
with gr.TabItem("📁 Driving Pickle") as tab_video:
gr.Examples(
examples=data_examples_i2v_pickle,
fn=gpu_wrapped_execute_video,
inputs=[
source_image_input,
driving_video_pickle_input,
flag_do_crop_input,
flag_stitching,
flag_remap_input,
flag_crop_driving_video_input,
],
outputs=[output_image, output_image_paste_back, output_video_i2v_gif],
examples_per_page=len(data_examples_i2v_pickle),
cache_examples=False,
)
with gr.TabItem("🎞️ Driving Video") as tab_video:
gr.Examples(
examples=data_examples_i2v,
fn=gpu_wrapped_execute_video,
inputs=[
source_image_input,
driving_video_input,
flag_do_crop_input,
flag_stitching,
flag_remap_input,
flag_crop_driving_video_input,
],
outputs=[output_image, output_image_paste_back, output_video_i2v_gif],
examples_per_page=len(data_examples_i2v),
cache_examples=False,
)
process_button_animation.click(
fn=gpu_wrapped_execute_video,
inputs=[
source_image_input,
driving_video_input,
driving_video_pickle_input,
flag_do_crop_input,
flag_remap_input,
driving_multiplier,
flag_stitching,
flag_crop_driving_video_input,
scale,
vx_ratio,
vy_ratio,
scale_crop_driving_video,
vx_ratio_crop_driving_video,
vy_ratio_crop_driving_video,
tab_selection,
],
outputs=[output_video_i2v, output_video_concat_i2v, output_video_i2v_gif],
show_progress=True
)
demo.launch(
server_port=args.server_port,
share=args.share,
server_name=args.server_name
)