Skip to content

Latest commit

 

History

History
407 lines (250 loc) · 33.3 KB

File metadata and controls

407 lines (250 loc) · 33.3 KB

Elastic Core Libraries

BaseSplitCodeFactory

Inherited by the Factory contract. Main purpose is to hold the Kyberswap Elastic Pool creation code in a separate address, since its creation code is close to the bytecode size limit of 24kB.

Taken from Balancer Labs's solidity utils repo. The only modification made is the unchecked keyword for sol 0.8 compatibility.

getCreationCodeContracts()

Returns the 2 addresses where the creation code of the contract created by this factory is stored.

getCreationCode()

Returns the creation code of the contract this factory creates.

CodeDeployer

Taken from Balancer Labs's solidity utils repo. Imported and used by the BaseSplitCodeFactory contract to handle deployment.

FullMath

Taken from Mathemagic finale: muldiv - Remco Bloeman. Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision. Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits.

mulDivFloor()

Returns (a * b / denominator) rounded down.

Input Type Explanation
a uint256 multiplicand
b uint256 multiplier
denominator uint256 divisor

mulDivCeiling()

Similar to mulDivFloor, but rounded up.

LinkedList

A doubly linked list to be used for tick management.

Struct: Data

Field Type Explanation
previous int24 previous tick
next int24 next tick

init()

Initializes the LinkedList with the lowestValue and highestValue, where

  • lowestValue.previous = lowestValue
  • lowestValue.next = highestValue
  • highestValue.previous = lowestValue
  • highestValue.next = highestValue
Field Type Explanation
self mapping(int24 => Data) A mapping of int24 values to the Data struct
lowestValue int24 lowest value
highestValue int24 highest value

insert()

Inserts a new value into the LinkedList, given an existing lower value. The new value to be inserted should not be an existing value. Also, the condition lowerValue < newValue < lowerValue.next should be satisfied.

Field Type Explanation
self mapping(int24 => Data) A mapping of int24 values to the Data struct
newValue int24 value to be inserted
lowerValue int24 highest existing value in the linked list that is < newValue

remove()

Removes an existing value from the LinkedList. Returns the next lowest value (existingValue.previous).

Note that no removal is performed if removedValue happens to be the lowestValue or highestValue passed in init().

Field Type Explanation
self mapping(int24 => Data) A mapping of int24 values to the Data struct
removedValue int24 value to be removed

LiqDeltaMath

Contains a function to assist with the addition of signed liquidityDelta to unsigned liquidity.

applyLiquidityDelta()

Adds or remove uint128 liquidityDelta to uint128 liquidity

Field Type Explanation
liquidity uint128 Liquidity to be adjusted
liquidityDelta int128 quantity change to be applied
isAddLiquidity bool true = add liquidity, false = remove liquidity

MathConstants

Contains constants commonly used by multiple files.

QtyDeltaMath

Contains functions for calculating token0 and token1 quantites from differences in prices or from burning reinvestment tokens

getQtysForInitialLockup()

Calculate the token0 and token1 quantities needed for unlocking the pool given an initial price and liquidity.

Input

Input Field Type Explanation
initialSqrtP uint160 initial sqrt price raised by 2**96
liquidity uint128 initial liquidity. should be MIN_LIQUIDITY = 100000

Output

Return Field Type Explanation
qty0 uint256 token0 quantity required
qty1 uint256 token1 quantity required

calcRequiredQty0()

Calculates the token0 quantity between 2 sqrt prices for a given liquidity quantity.

Note that the function assumes that upperSqrtP > lowerSqrtP.

Input

Field Type Explanation
lowerSqrtP uint160 the lower sqrt price
upperSqrtP uint128 the upper sqrt price
liquidity int128 liquidity quantity
isAddLiquidity bool true = add liquidity, false = remove liquidity

Output

Type Explanation
int256 token0 qty required for position with liquidity between the 2 sqrt prices

Generally, if the return value > 0, it will be transferred into the pool. Conversely, if the return value < 0, it will be transferred out of the pool.

calcRequiredQty1()

Calculates the token1 quantity between 2 sqrt prices for a given liquidity quantity.

Note that the function assumes that upperSqrtP > lowerSqrtP.

Input

Field Type Explanation
lowerSqrtP uint160 the lower sqrt price
upperSqrtP uint128 the upper sqrt price
liquidity int128 liquidity quantity
isAddLiquidity bool true = add liquidity, false = remove liquidity

Output

Type Explanation
int256 token0 qty required for position with liquidity between the 2 sqrt prices

Generally, if the return value > 0, it will be transferred into the pool. Conversely, if the return value < 0, it will be transferred out of the pool.

getQty0FromBurnRTokens()

Calculates the token0 quantity to be sent to the user for a given amount of reinvestment tokens to be burnt.

Input Field Type Explanation
sqrtP uint160 the current sqrt price
liquidity uint128 expected change in reinvestment liquidity due to the burning of reinvestment tokens

getQty1FromBurnRTokens()

Calculates the token1 quantity to be sent to the user for a given amount of reinvestment tokens to be burnt.

Input Field Type Explanation
sqrtP uint160 the current sqrt price
liquidity uint128 expected change in reinvestment liquidity due to the burning of reinvestment tokens

divCeiling()

Returns ceil(x / y). y should not be zero.

QuadMath

getSmallerRootOfQuadEqn()

Given a variant of the quadratic equation $$ax^2 - 2bx + c - 0$$ where $$a$$, $$b$$ and $$c &gt; 0$$, calculate the smaller root via the quadratic formula.

Returns $$\frac{b - \sqrt{b^2 - ac}}{a}$$

Input Field Type Explanation
a uint256
b uint256
c uint256

sqrt()

Unchanged from DMMv1. Calculates the square root of a value using the Babylonian method.

ReinvestmentMath

Contains a helper function to calculate reinvestment tokens to be minted given an increase in reinvestment liquidity.

calcRMintQty()

Given the difference between reinvestL and reinvestLLast, calculate how many reinvestment tokens are to be minted.

$$rMintQty = rTotalSupply * \frac{reinvestL - reinvestL_{Last}}{reinvestL_{Last}} * \frac{baseL}{baseL + reinvestL}$$

Input Field Type Explanation
reinvestL uint256 latest reinvestment liquidity value. Should be >= reinvestLLast
reinvestLLast uint256 reinvestmentLiquidityLast value
baseL uint256 active base liquidity
rTotalSupply uint256 total supply of reinvestment token

SafeCast

Contains methods for safely casting between different types.

toUint32()

Casts a uint256 to a uint32. Reverts on overflow.

toInt128()

Casts a uint128 to a int128. Reverts on overflow.

toUint128()

Casts a uint256 to a uint128. Reverts on overflow.

revToUint128()

Given int128 y, returns uint128 z = -y.

toUint160()

Casts a uint256 to a uint160. Reverts on overflow.

toInt256()

Casts a uint256 to a int256. Reverts on overflow.

revToInt256()

Cast a uint256 to a int256 and reverses the sign. Reverts on overflow.

revToUint256()

Given int256 y, returns uint256 z = -y.

SwapMath

Contains the logic needed for computing swap input / output amounts and fees. The primary function to look at is computeSwapStep, as it is where the bulk of the swap flow logic is in, and where calls to the other functions in the library are made.

computeSwapStep()

Computes the actual swap input / output amounts to be deducted or added, the swap fee to be collected and the resulting price.

Inputs

Field Type Explanation
liquidity uint256 active base liquidity + reinvestment liquidity
currentSqrtP uint160 current sqrt price
targetSqrtP uint160 sqrt price limit nextSqrtP can take
feeInBps uint256 swap fee in basis points
specifiedAmount int256 amount remaining to be used for the swap
isExactInput bool true if specifiedAmount refers to input amount, false if specifiedAmount refers to output amount
isToken0 bool true if specifiedAmount is in token0, false if specifiedAmount is in token1

Outputs

Field Type Explanation
usedAmount int256 actual amount to be used for the swap. >= 0 if isExactInput = true, <= 0 if isExactInput = false
returnedAmount int256 output qty (<= 0) to be accumulated if isExactInput = true, input qty (>= 0) if isExactInput = false
deltaL uint256 collected swap fee, to be incremented to reinvest liquidity
nextSqrtP uint160 new sqrt price after the computed swap step

Note

nextSqrtP should not exceed targetSqrtP.

calcReachAmount()

Calculates the amount needed to reach targetSqrtP from currentSqrtP. Note that currentSqrtP and targetSqrtP are casted from uint160 to uint256 as they are multiplied by TWO_BPS (20_000) or feeInBps.

The mathematical formulas are provided below for reference.

isExactInputisToken0Formula
truetrue \frac{2*BPS*L(\sqrt{p_c} - \sqrt{p_n})}{\sqrt{p_c}(2*BPS*\sqrt{p_n} - fee\sqrt{p_c})} (>0)
truefalse \frac{2*BPS*\sqrt{p_c}*L(\sqrt{p_n} - \sqrt{p_c})}{(2*BPS*\sqrt{p_c} - fee\sqrt{p_n})} (>0)
falsetrue -\frac{2*BPS*L(\sqrt{p_n} - \sqrt{p_c})}{\sqrt{p_c}(2*BPS*\sqrt{p_n} - fee\sqrt{p_c})} (<0)
falsefalse -\frac{2*BPS*\sqrt{p_c}*L(\sqrt{p_c} - \sqrt{p_n})}{(2*BPS*\sqrt{p_c} - fee\sqrt{p_n})} (<0)

Note that while cases 1 and 3 and cases 2 and 4 are mathematically equivalent, the implementation differs by performing a double negation for the exact output cases. It takes the difference of $$\sqrt{p_n}$$ and $$\sqrt{p_c}$$ in the numerator (>0), then performing a second negation.

Input Field Type Formula Variable Explanation
liquidity uint256 $$L$$ active base liquidity + reinvestment liquidity
currentSqrtP uint160 $$\sqrt{p_c}$$ current sqrt price
targetSqrtP uint160 $$\sqrt{p_n}$$ sqrt price limit nextSqrtP can take
feeInBps uint256 $$fee$$ swap fee in basis points
isExactInput bool N.A. true / false if specified swap amount refers to input / output amount respectively
isToken0 bool N.A. true / false if specified swap amount is in token0 / token1 respectively

estimateIncrementalLiquidity()

Estimates deltaL, the swap fee to be collected based on amountSpecified. This is called only for the final swap step, where the next (temporary) tick will not be crossed.

In the case where exact input is specified, the formula is rather straightforward.

isToken0Formula
true\frac{delta*fee*\sqrt{p_c}}{2*BPS}
false\frac{delta*fee}{2*BPS*\sqrt{p_c}}

In the case where exact output is specified, a quadratic equation has to be solved. The desired result is the smaller root of the quadratic equation.

isToken0Formula
truefee*(\Delta{L})^2-2[(BPS-fee)*L-BPS*delta*\sqrt{p_c}]\Delta{L}+fee*L*delta*\sqrt{p_c}=0
falsefee*(\Delta{L})^2-2[(BPS-fee)*L-\frac{BPS*delta}{\sqrt{p_c}}]\Delta{L}+\frac{fee*L*delta}{\sqrt{p_c}}=0
Input FieldTypeFormula VariableExplanation
absDeltauint256delta∥∥usedAmount∥∥, absolute value of usedAmount (actual amount used for swap)
liquidityuint256Lactive base liquidity + reinvestment liquidity
currentSqrtPuint160\sqrt{p_c}current sqrt price
feeInBpsuint256feeswap fee in basis points
isExactInputboolN.A.true / false if specified swap amount refers to input / output amount respectively
isToken0boolN.A.true / false if specified swap amount is in token0 / token1 respectively

calcIncrementalLiquidity()

Calculates deltaL, the swap fee to be collected based on amountSpecified. This is called for an intermediate swap step, where the next (temporary) tick will be crossed.

The mathematical formulas are provided below for reference.

isExactInputisToken0Formula
truetrue \sqrt{p_n}*(\frac{L}{\sqrt{p_c}}+\|delta\|)-L
truefalse \frac{(L*\sqrt{p_c})+\|delta\|}{\sqrt{p_n}}-L
falsetrue\sqrt{p_n}*(\frac{L}{\sqrt{p_c}}-\|delta\|)-L
falsefalse \frac{(L*\sqrt{p_c})-\|delta\|}{\sqrt{p_n}}-L

Inputs

Input FieldTypeFormula VariableExplanation
absDeltauint256|delta|∥∥usedAmount∥∥, absolute value of usedAmount (actual amount used for swap)
liquidityuint256Lactive base liquidity + reinvestment liquidity
currentSqrtPuint160\sqrt{p_c}current sqrt price
nextSqrtPuint160\sqrt{p_n}next sqrt price
isExactInputboolN.A.true / false if specified swap amount refers to input / output amount respectively
isToken0boolN.A.true / false if specified swap amount is in token0 / token1 respectively

calcFinalPrice()

Calculates the sqrt price of the final swap step where the next (temporary) tick will not be crossed.

The mathematical formulas are provided below for reference.

isExactInputisToken0Formula
truetrue \frac{(L+\Delta{L})\sqrt{p_c}}{L+\|delta\|\sqrt{p_c}}
truefalse \frac{L\sqrt{p_c}+\|delta\|}{L+\Delta{L}}
falsetrue\frac{(L+\Delta{L})\sqrt{p_c}}{L-\|delta\|\sqrt{p_c}}
falsefalse \frac{L\sqrt{p_c}-\|delta\|}{L+\Delta{L}}

Input

Input Field Type Formula Variable Explanation
absDelta uint256 |$$delta$$| $$∥∥$$usedAmount$$∥∥$$, absolute value of usedAmount (actual amount used for swap)
liquidity uint256 $$L$$ active base liquidity + reinvestment liquidity
deltaL uint256 $$ΔL$$ collected swap fee
currentSqrtP uint160 $$\sqrt{p_c}$$ current sqrt price
isExactInput bool N.A. true / false if specified swap amount refers to input / output amount respectively
isToken0 bool N.A. true / false if specified swap amount is in token0 / token1 respectively

calcReturnedAmount()

Calculates returnedAmount for the computeSwapStep function. Rounds down when isExactInput = true (calculating output < 0) so that we avoid sending too much. Conversely, rounds up when isExactInput = false to ensure sufficient input > 0 will be received.

The mathematical formulas are provided below for reference.

isToken0 = true

The formula is actually the same, with the difference being made to the operands to ensure the price difference is non-negative.

isExactInput Formula
true $$\Delta{L}\sqrt{p_n}-L(\sqrt{p_c}-\sqrt{p_n})$$
false $$\Delta{L}\sqrt{p_n}+L(\sqrt{p_n}-\sqrt{p_c})$$

isToken0 = false

$$\frac{L+\Delta{L}}{\sqrt{p_n}} - \frac{L}{\sqrt{p_c}}$$

Input FieldTypeFormula VariableExplanation
liquidityuint256Lactive base liquidity + reinvestment liquidity
currentSqrtPuint160\sqrt{p_c}current sqrt price
nextSqrtPuint160\sqrt{p_n}next sqrt price
deltaLuint256ΔLcollected swap fee
isExactInputboolN.A.true / false if specified swap amount refers to input / output amount respectively
isToken0boolN.A.true / false if specified swap amount is in token0 / token1 respectively

TickMath

Contains functions for computing square root prices from ticks and vice versa. Adapted from Uniswap V3's TickMath library.

Constants

FieldTypeValueExplanation
MIN_TICKint24-887272Minimum possible tick = {log_{1.0001}2^{-128}}
MAX_TICKint24887272Minimum possible tick = {log_{1.0001}2^{128}}
MIN_SQRT_RATIOuint1604295128739getSqrtRatioAtTick(MIN_TICK)
MAX_SQRT_RATIOuint1601461446703485210103287273052203988822378723970342getSqrtRatioAtTick(MAX_TICK)

getSqrtRatioAtTick()

Given a int24 tick, calculates $${\sqrt{1.0001^{tick}} * 2^{96}}$$.

getTickAtSqrtRatio()

Given a square root price ratio uint160 sqrtP, calculates the greatest tick such that getSqrtRatioAtTick(tick) <= sqrtP.

Note that MIN_SQRT_RATIO <= sqrtP <= MAX_SQRT_RATIO, otherwise the function will revert.

getMaxNumberTicks()

Used to calculate the maximum liquidity allowable per tick. This function calculates the maximum number of ticks that can be inserted into the LinkedList, given a tickDistance.

Field Type Explanation
_tickDistance int24 Ticks can only be initialized at multiples of this value.