[2024/11/08] Update: PRDC has been integrated into d3rlpy!
Code for ICML'23 paper "Policy Regularization with Dataset Constraint for Offline Reinforcement Learning", arXiv link.
If you find this repository useful for your research, please cite:
@inproceedings{
prdc,
title={Policy Regularization with Dataset Constraint for Offline Reinforcement Learning},
author={Yuhang Ran and Yi-Chen Li and Fuxiang Zhang and Zongzhang Zhang and Yang Yu},
booktitle={International Conference on Machine Learning},
year={2023}
}
pip install -r requirements.txt
Install the D4RL benchmark
git clone https://github.com/Farama-Foundation/D4RL.git
cd d4rl
pip install -e .
For halfcheetah:
python main.py --env_id halfcheetah-medium-v2 --seed 1024 --device cuda:0 --alpha 40.0 --beta 2.0 --k 1
For hopper & walker2d:
python main.py --env_id hopper-medium-v2 --seed 1024 --device cuda:0 --alpha 2.5 --beta 2.0 --k 1
We use reward shaping for antmaze, which is a common trick used by CQL, IQL, FisherBRC, etc.
python main.py --env_id antmaze-medium-play-v2 --seed 1024 --device cuda:0 --alpha 7.5 --beta 7.5 --k 1 --scale=10000 --shift=-1
tensorboard --logdir='./result'