Skip to content

This research explores a novel targeted attack for neural network classifiers. This research has been led by Dr.Samer Khamaiseh with ongoing efforts of Deirdre Jost and Steven Chiacchira

Notifications You must be signed in to change notification settings

LAiSR-SK/target-x

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Target-X

Sample adversarial examples generated with Target-X, T-FGSM, adn T-UAP

This repository introduces Target-X, a novel and fast method for the construction of adversarial targeted images on large-scale datasets that can fool the state-of-the-art image classification neural networks. We evaluate the performance of Target-X using the well-trained image classification neural networks of different architectures and compare it with the well-known T-FGSM and T-UAP targeted attacks. The reported results demonstrate that Target-X can generate targeted adversarial images with the least perturbations on large-scale datasets that can fool the image classification neural networks and significantly outperform the T-FGSM and T-UAP attacks.

Results

Here we show our work, Target-X, compared to two other adversarial attacks, T-FGSM and T-UAP. We compare with four metrics:

  • Af, denoting the average prediction accuracy of the architecture on the original images.
  • Pf, denoting the average robustness of the perturbations on the the prediction accuracy of the architecture.
  • Tf, denoting the success rate of targeted perturbations.
  • Ef, denoting the average execution time.

Four tables are given, each showing the result of testing with different perturbation sizes (Ɛ). Areas where Target-X outperforms other techniques are shown in bold.

Ɛ = 0.0005

Algorithm Architecture Af Pf Tf Ef
Target-X AlexNet 0.573 0.302 0.596 0.7754
DenseNet-201 0.766 0.184 0.803 3.9975
GoogleNet 0.697 0.129 0.859 0.8496
ResNet-34 0.739 0.108 0.867 2.4447
Resnet-101 0.775 0.155 0.824 0.8557
VGG-19 0.730 0.292 0.618 2.7172
T-FGSM AlexNet 0.573 0.568 0.0380 0.0187
DenseNet-201 0.766 0.762 0.0418 0.1566
GoogleNet 0.697 0.694 0.0520 0.0466
ResNet-34 0.739 0.730 0.0528 0.0840
ResNet-101 0.775 0.772 0.0492 0.0350
VGG-19 0.730 0.725 0.0550 0.0723
T-UAP AlexNet 0.573 0.573 0.0110 0.4741
DenseNet-201 0.766 0.766 0.0150 3.9476
GoogleNet 0.697 0.697 0.0120 1.1437
ResNet-34 0.739 0.739 0.0080 2.0902
ResNet-101 0.775 0.775 0.0012 0.8952
VGG-19 0.730 0.730 0.0080 1.7886

Ɛ = 0.005

Algorithm Architecture Af Pf Tf Ef
Target-X AlexNet 0.573 0.066 0.941 0.2242
DenseNet-201 0.766 0.029 0.991 0.8817
GoogleNet 0.697 0.036 0.986 0.1952
ResNet-34 0.739 0.026 0.992 0.5791
Resnet-101 0.775 0.032 0.983 0.1760
VGG-19 0.730 0.080 0.887 1.0760
T-FGSM AlexNet 0.573 0.464 0.4048 0.0184
DenseNet-201 0.766 0.547 0.4332 0.1568
GoogleNet 0.697 0.476 0.4818 0.0461
ResNet-34 0.739 0.461 0.5094 0.0844
ResNet-101 0.775 0.535 0.4498 0.0348
VGG-19 0.730 0.449 0.5300 0.0734
T-UAP AlexNet 0.573 0.573 0.0090 0.4629
DenseNet-201 0.766 0.766 0.0100 3.9603
GoogleNet 0.697 0.697 0.0100 1.1440
ResNet-34 0.739 0.739 0.0120 2.0899
ResNet-101 0.775 0.775 0.0130 0.8991
VGG-19 0.730 0.730 0.0100 1.7888

Ɛ = 0.05

Algorithm Architecture Af Pf Tf Ef
Target-X AlexNet 0.573 0.038 0.980 0.0831
DenseNet-201 0.766 0.022 0.997 0.3809
GoogleNet 0.697 0.030 0.996 0.0989
ResNet-34 0.739 0.022 0.996 0.2766
Resnet-101 0.775 0.022 0.993 0.0883
VGG-19 0.730 0.054 0.923 0.5926
T-FGSM AlexNet 0.573 0.062 0.9620 0.0186
DenseNet-201 0.766 0.122 0.9010 0.1565
GoogleNet 0.697 0.107 0.9164 0.0458
ResNet-34 0.739 0.077 0.9410 0.0838
ResNet-101 0.775 0.161 0.8590 0.0349
VGG-19 0.730 0.075 0.9456 0.0701
T-UAP AlexNet 0.573 0.573 0.0110 0.4631
DenseNet-201 0.766 0.766 0.0100 3.9629
GoogleNet 0.697 0.697 0.0090 1.1443
ResNet-34 0.739 0.739 0.0090 2.0854
ResNet-101 0.775 0.775 0.0090 0.9002
VGG-19 0.730 0.731 0.0120 1.7865

Ɛ = 0.2

Algorithm Architecture Af Pf Tf Ef
Target-X AlexNet 0.573 0.034 0.981 0.0826
DenseNet-201 0.766 0.024 0.999 0.3818
GoogleNet 0.697 0.027 0.996 0.1059
ResNet-34 0.739 0.027 0.997 0.3043
Resnet-101 0.775 0.024 0.993 0.0917
VGG-19 0.730 0.041 0.949 0.5616
T-FGSM AlexNet 0.573 0.024 0.9838 0.0184
DenseNet-201 0.766 0.145 0.8740 0.1569
GoogleNet 0.697 0.131 0.8864 0.0458
ResNet-34 0.739 0.093 0.9224 0.0840
ResNet-101 0.775 0.185 0.8262 0.0351
VGG-19 0.730 0.067 0.9474 0.0702
T-UAP AlexNet 0.573 0.572 0.0100 0.4628
DenseNet-201 0.766 0.765 0.0120 3.9903
GoogleNet 0.697 0.697 0.0110 1.1463
ResNet-34 0.739 0.739 0.0090 2.0850
ResNet-101 0.775 0.775 0.0090 0.9007
VGG-19 0.730 0.730 0.0090 1.7874

Setup and Installation

Cloning from git

To clone the repository us the following:

git clone https://github.com/nssrlab/target-x.git <DESTINATION>

Where <DESTINATION> is the folder you want Target-X to reside in.

Setting up a Conda environment

To create a conda environment to run the project in, use the provided environment.yml in the following command:

conda env create -f environment.yml -n <ENVIRONMENT_NAME>

Where <ENVIRONMENT_NAME> is the name you want to use for the conda environment.

Cite Us

@INPROCEEDINGS{10197071,
  author={Khamaiseh, Samer Y. and Bagagem, Derek and Al-Alaj, Abdullah and Mancino, Mathew and Alomari, Hakem and Aleroud, Ahmed},
  booktitle={2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)}, 
  title={Target-X: An Efficient Algorithm for Generating Targeted Adversarial Images to Fool Neural Networks}, 
  year={2023},
  volume={},
  number={},
  pages={617-626},
  keywords={Training;Image recognition;Perturbation methods;Force;Artificial neural networks;Computer architecture;Robustness;adversarial images;deep learning;image classification neural networks;adversarial deep neural networks},
  doi={10.1109/COMPSAC57700.2023.00087}}

About

This research explores a novel targeted attack for neural network classifiers. This research has been led by Dr.Samer Khamaiseh with ongoing efforts of Deirdre Jost and Steven Chiacchira

Topics

Resources

Stars

Watchers

Forks

Languages