forked from shanto268/QuantumDeviceSEM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_all_features.py
120 lines (85 loc) · 3.49 KB
/
extract_all_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import cv2
import pytesseract
import os
import datetime
def extract_scale(image_path):
# Load the image
image = cv2.imread(image_path)
# Crop the image to the region of interest
cropped = image[:50, 1050:]
# Convert the image to grayscale
gray = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY)
# Threshold the image to isolate the white lines and text
_, thresholded = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)
# Use pytesseract to extract the text
text = pytesseract.image_to_string(thresholded)
# Extract the number and unit from the text
number = ''.join(filter(str.isdigit, text))
unit = ''.join(filter(str.isalpha, text))
# Convert the number to an integer
number = int(number)
# Convert the number to nanometers if the unit is not 'nm'
if unit.lower() != 'nm':
number *= 1000
return number
# Load the model
sam = sam_model_registry["vit_h"](checkpoint="weights/sam_vit_h_4b8939.pth")
# Create a predictor
predictor = SamPredictor(sam)
# Ask for the image path
image_path = input("Enter the path to the image: ")
# Load the image
image = Image.open(image_path)
# Convert the image to a numpy array
image = np.array(image)
# Crop the bottom 80 pixels
crop_pixels = 80
scale_image = image[-crop_pixels:]
image = image[:-crop_pixels]
# Save the scale image
Image.fromarray(scale_image).save('scale.jpg')
# Set the image
predictor.set_image(image)
# Generate masks for an entire image
mask_generator = SamAutomaticMaskGenerator(sam)
masks = mask_generator.generate(image)
# Sort masks by area
masks.sort(key=lambda x: x['area'], reverse=True)
# Define the color to ignore
ignore_color = np.array([255, 0, 0]) # Red color
# Define the scale
phys_scale = extract_scale('scale.jpg') #nm
pixel_scale = 370 #measured
# Create results directory if it doesn't exist
image_name = os.path.splitext(os.path.basename(image_path))[0]
os.makedirs(f'results/{image_name}', exist_ok=True)
# Save a copy of the input image
Image.fromarray(image).save(f'results/{image_name}/{image_name}_copy.png')
# Display the masks
for i, mask in enumerate(masks):
# Apply the mask to the image
masked_image = image * mask['segmentation'][:, :, None]
# Check if the masked image contains the ignore color
if np.any(np.all(masked_image == ignore_color, axis=2)):
continue
# Calculate and display the size of the bounding box in nanometers
bbox_size_nm = (mask['bbox'][2] * phys_scale / pixel_scale, mask['bbox'][3] * phys_scale / pixel_scale)
fig, ax = plt.subplots(1)
ax.imshow(masked_image)
# Create a Rectangle patch for the bounding box
bbox = patches.Rectangle((mask['bbox'][0], mask['bbox'][1]), mask['bbox'][2], mask['bbox'][3], linewidth=1, edgecolor='r', facecolor='none')
# Add the patch to the Axes
ax.add_patch(bbox)
# Add the dimensions of the bounding box to the image
ax.text(mask['bbox'][0], mask['bbox'][1] - 10, f'{bbox_size_nm[0]:.2f}nm', color='r')
ax.text(mask['bbox'][0] + mask['bbox'][2] + 10, mask['bbox'][1] + mask['bbox'][3] / 2, f'{bbox_size_nm[1]:.2f}nm', color='r')
# Remove the axes
plt.axis('off')
# Save the image
plt.savefig(f'results/{image_name}/mask{i+1}_{datetime.datetime.now().strftime("%Y%m%d%H%M%S")}.png', bbox_inches='tight', pad_inches=0)
plt.close()