Skip to content

Latest commit

 

History

History
79 lines (61 loc) · 2.75 KB

README.md

File metadata and controls

79 lines (61 loc) · 2.75 KB

Text2NKG

Official resources of "Text2NKG: Fine-Grained N-ary Relation Extraction for N-ary relational Knowledge Graph Construction". Haoran Luo, Haihong E, Yuhao Yang, Tianyu Yao, Yikai Guo, Zichen Tang, Wentai Zhang, Shiyao Peng, Kaiyang Wan, Meina Song, Wei Lin, Yifan Zhu, Luu Anh Tuan. NeurIPS 2024 [paper].

Overview

Setup

Default implementation environment

  • Linux(SSH) + Python3.7.13 + Pytorch1.8.1 + Cuda11.1
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

Install Dependencies

Install dependencies, The code is based on huggaface's transformers:

pip install -r requirement.txt
pip install --editable ./transformers

Then, we should install apex.

unzip apex.zip
cd apex
python setup.py install
cd ..

Datasets

Our experiments are based on HyperRED dataset.

Download PLMs

Download Pre-trained Language Models from Hugging Face:

mkdir -p bert_models/bert-base-uncased
wget -P bert_models/bert-base-uncased https://huggingface.co/bert-base-uncased/resolve/main/pytorch_model.bin
wget -P bert_models/bert-base-uncased https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt
wget -P bert_models/bert-base-uncased https://huggingface.co/bert-base-uncased/resolve/main/config.json
mkdir -p bert_models/bert-large-uncased
wget -P bert_models/bert-large-uncased https://huggingface.co/bert-large-uncased/resolve/main/pytorch_model.bin
wget -P bert_models/bert-large-uncased https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt
wget -P bert_models/bert-large-uncased https://huggingface.co/bert-large-uncased/resolve/main/config.json
wget -P bert_models/bert-large-uncased https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json
wget -P bert_models/bert-large-uncased https://huggingface.co/bert-large-uncased/resolve/main/tokenizer_config.json

Training

Train Text2NKG n-ary RE Models:

python run_re.py

BibTex

If you find this work is helpful for your research, please cite:

@misc{luo2023text2nkg,
      title={Text2NKG: Fine-Grained N-ary Relation Extraction for N-ary relational Knowledge Graph Construction}, 
      author={Haoran Luo and Haihong E and Yuhao Yang and Tianyu Yao and Yikai Guo and Zichen Tang and Wentai Zhang and Kaiyang Wan and Shiyao Peng and Meina Song and Wei Lin},
      year={2023},
      eprint={2310.05185},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}

For further questions, please contact: luohaoran@bupt.edu.cn.