-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path1dbptf
executable file
·264 lines (227 loc) · 12.3 KB
/
1dbptf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/bin/env Rscript
#This script applies temporal filtering to a matrix using fslmaths -bptf, which uses a nonlinear highpass and
#Gaussian running line lowpass. This is important if you are applying fslmaths -bptf temporal filtering of imaging data
#and regression of other signals outside of FEAT. In Feat, checking the "Apply temporal filtering" checkbox will
#apply the same filtering to regressors as the imaging data, which is important to avoid leakage of nuisance frequencies
#into the imaging data.
#There is no straightforward way to hack into -bptf on a text file without specifying a full .fsf file.
#Filtering is applied using the feat_model command, which calls on the same bandpass and temporal filter
#function as fslmaths. Thus, to hack around it, we use an R script here to fake a NIfTI file, apply filtering
#then re-extract.
printHelp <- function() {
cat("1dbptf applies bandpass temporal filtering using fslmaths to mimic filtering inside of FSL GUI tools.",
" This is especially important if high-pass filtering is applied to imaging data, but not regressors",
" and analyses with those regressors are used outside of FEAT (which typically applies temporal filtering internally)",
"",
"Required inputs are:",
" -matrix <2D file>: A text file matrix containing regressors (rows) x time (columns) to be temporally filtered.",
" -tr <secs> : The repetition time of the fMRI sequence (used to compute filtering parameters).",
"",
"At least one of the following filtering specifications:",
" -hp_seconds <secs> : The high-pass filter cutoff in seconds (i.e., signals slower than this are filtered)",
" -hp_hz <Hz> : The high-pass filter cutoff in Hz (e.g., .01)",
" -hp_volumes <vols> : The FWHM of the high-pass filter in volumes. This is passed straight to -bptf, but is not recommended.",
" -lp_seconds <secs> : The low-pass filter cutoff in seconds (i.e., signals faster than this are filtered)",
" -lp_hz <Hz> : The low-pass filter cutoff in Hz (e.g., .25)",
" -lp_volumes <vols> : The FWHM of the low-pass filter in volumes. This is passed straight to -bptf, but is not recommended.",
"",
"If an -hp specification is not provided -> only low-pass filter",
"If an -lp specification is not provided -> only high-pass filter",
"If -hp and -lp specifications are provided -> bandpass filter",
"",
"Optional arguments are:",
" -comment_char: Character for any comment lines in -matrix input (default: #)",
" -demean: remove the time series mean after filtering (off by default)",
" -fwhm_sigma_factor: The FWHM -> sigma conversion factor. Typically sqrt(8*log(2)), but FSL high-pass uses 2.0",
" -fsl_dir: The location of FSL on this computer (default is to assume fslmaths is in the system path)",
" -out_file: the name of the output file of filtered regressors (default: filtered_regressors.txt)",
" -sep: The field separator for the input file (default: white space)",
" -time_along_rows: matrix is stored with time along rows, regressors along columns (default is time along columns)",
" -quiet: do not print out the system calls being made",
"",
"The script depends on the oro.nifti R library and an FSL installation in the path (for fslmaths).",
"",
"Example usage: 1dbptf -matrix nuisance.txt -hp_hz .009 -tr 1.5 -out_file nuisance_filtered.txt",
sep="\n")
}
exec <- function(cmd, quiet=FALSE) {
if (!quiet) { cat(cmd, sep="\n") }
system(cmd)
}
#read in command line arguments.
args <- commandArgs(trailingOnly = TRUE)
# for testing
# args <- c("-matrix", "unfiltered_nuisance_regressors.txt", "-tr", ".635", "-time_along_rows", "-out_file", "nuisance_regressors.txt", "-hp_volumes", "80.2460")
if (length(args) == 0L) {
message("1dbptf expects at least -matrix <regressors x time> -lp_seconds <low pass seconds> OR -hp_seconds <high pass seconds>.\n")
printHelp()
quit(save="no", 1, FALSE)
}
hp_volumes <- -1 #do not apply high-pass
lp_volumes <- -1 #do not apply low-pass
hp_seconds <- NA
lp_seconds <- NA
hp_hz <- NA #Hz-based specification
lp_hz <- NA
mat <- NULL
out_file <- "filtered_regressors.txt"
comment.char <- "#"
sep <- "" #whitespace default
tr <- NULL #repetition time in seconds
demean <- FALSE #whether to remove mean after filtering (this is what -bptf does by default since FSL 5.0.7, I think)
fwhm_to_sigma <- sqrt(8*log(2)) #Details here: https://www.mail-archive.com/hcp-users@humanconnectome.org/msg01393.html
transpose <- FALSE #TRUE if matrix is time x regressors
quiet <- FALSE
fsl_dir <- Sys.getenv("FSLDIR") #default to environment location
if (any(grepl("-hp_seconds", args, fixed=TRUE)) && any(grepl("-hp_hz", args, fixed=TRUE))) {
stop("You must specify either -hp_seconds OR -hp_hz, not both!")
}
if (any(grepl("-lp_seconds", args, fixed=TRUE)) && any(grepl("-lp_hz", args, fixed=TRUE))) {
stop("You must specify either -lp_seconds OR -lp_hz, not both!")
}
#print(args)
argpos <- 1
while (argpos <= length(args)) {
if (args[argpos] == "-demean") {
demean <- TRUE
argpost <- argpos + 1
} else if (args[argpos] == "-matrix") {
mat <- args[argpos + 1] #name of matrix containing regressors x time
stopifnot(file.exists(mat))
argpos <- argpos + 2
} else if (args[argpos] == "-tr") {
tr <- as.numeric(args[argpos + 1])
if (is.na(tr)) { stop("Could not convert -tr: ", as.character(args[argpos+1]), " to number") }
argpos <- argpos + 2
} else if (args[argpos] == "-hp_seconds") {
hp_seconds <- as.numeric(args[argpos + 1]) #high-pass cutoff in seconds
if (is.na(hp_seconds)) { stop("Could not convert -hp_seconds: ", as.character(args[argpos+1]), " to number") }
argpos <- argpos + 2
} else if (args[argpos] == "-hp_hz") {
hp_hz <- as.numeric(args[argpos + 1]) #high-pass cutoff in Hz
if (is.na(hp_hz)) { stop("Could not convert -hp_hz: ", as.character(args[argpos+1]), " to number") }
argpos <- argpos + 2
} else if (args[argpos] == "-hp_volumes") {
hp_volumes <- as.numeric(args[argpos + 1]) #high-pass cutoff in volumes
if (is.na(hp_volumes)) { stop("Could not convert -hp_volumes: ", as.character(args[argpos+1]), " to number") }
argpos <- argpos + 2
} else if (args[argpos] == "-lp_seconds") {
lp_seconds <- as.numeric(args[argpos + 1]) #low-pass cutoff in seconds
if (is.na(lp_seconds)) { stop("Could not convert -lp_seconds: ", as.character(args[argpos+1]), " to number") }
argpos <- argpos + 2
} else if (args[argpos] == "-lp_hz") {
lp_hz <- as.numeric(args[argpos + 1]) #low-pass cutoff in Hz
if (is.na(lp_hz)) { stop("Could not convert -lp_hz: ", as.character(args[argpos+1]), " to number") }
argpos <- argpos + 2
} else if (args[argpos] == "-lp_volumes") {
lp_volumes <- as.numeric(args[argpos + 1]) #low-pass cutoff in volumes
if (is.na(lp_volumes)) { stop("Could not convert -lp_volumes: ", as.character(args[argpos+1]), " to number") }
argpos <- argpos + 2
} else if (args[argpos] == "-out_file") {
out_file <- args[argpos + 1] #name of file to be written
argpos <- argpos + 2
} else if (args[argpos] == "-comment_char") {
comment.char <- args[argpos + 1] #character for comment fields in input file
argpos <- argpos + 2
} else if (args[argpos] == "-fsl_dir") {
fsl_dir <- args[argpos + 1] #location of FSL
stopifnot(file.exists(fsl_dir))
argpos <- argpos + 2
} else if (args[argpos] == "-fwhm_sigma_factor") {
fwhm_to_sigma <- as.numeric(args[argpos + 1])
argpos <- argpos + 2
} else if (args[argpos] == "-quiet") {
quiet <- TRUE
argpos <- argpos + 1
} else if (args[argpos] == "-time_along_rows") {
transpose <- TRUE
argpos <- argpos + 1
} else if (args[argpos] == "-sep") {
sep <- args[argpos + 1] #name of file separator to read.table
argpos <- argpos + 2
} else {
stop("Not sure what to do with argument: ", args[argpos])
}
}
suppressMessages(require(oro.nifti))
if (is.null(mat)) { stop("-matrix input is required (regressors x time)") }
if (is.null(tr)) { stop("-tr (in seconds) is required") }
if (fsl_dir != "") { fsl_dir <- file.path(fsl_dir, "bin/") } #binary location in FSLDIR (only use if non-empty; otherwise assume in path). trailing slash to get prefix right below
#compute cutoffs in terms of volumes
#note that for high-pass, FSL defaults to 2 * TR as denominator, though this is technically incorrect. FWHM -> Sigma is sqrt(8*log(2))
if (!is.na(hp_hz)) {
message(paste0("Converting to high-pass sigma (volumes): sigma[vol] = 1/(hp_hz * ", round(fwhm_to_sigma, 3), " * tr)"))
hp_volumes <- 1/(hp_hz * fwhm_to_sigma * tr)
} else if (!is.na(hp_seconds)) {
message(paste0("Converting to high-pass sigma (volumes): sigma[vol] = hp_seconds/(", round(fwhm_to_sigma, 3), " * tr)"))
hp_volumes <- hp_seconds/(fwhm_to_sigma * tr)
}
if (hp_volumes == -1) {
message("No high-pass filtering")
}
if (!is.na(lp_hz)) {
message(paste0("Converting to low-pass sigma (volumes): sigma[vol] = 1/(lp_hz * ", round(fwhm_to_sigma, 3), " * tr)"))
lp_volumes <- 1/(lp_hz * fwhm_to_sigma * tr)
} else if (!is.na(lp_seconds)) {
message(paste0("Converting to low-pass sigma (volumes): sigma[vol] = lp_seconds/(", round(fwhm_to_sigma, 3), " * tr)"))
lp_volumes <- lp_seconds/(fwhm_to_sigma * tr)
}
if (lp_volumes == -1) {
message("No low-pass filtering")
}
if (lp_volumes == -1 && hp_volumes == -1) { stop("One of -lp_seconds, -lp_hz, -lp_volumes, -hp_seconds, -hp_hz, or -hp_volumes must be passed in for filtering.") }
m <- as.matrix(read.table(file=mat, sep=sep, comment.char=comment.char))
if (transpose) {
message("Assuming that rows are time and columns are regressors.")
m <- t(m)
} else {
message("Assuming that rows are regressors and columns are time.")
}
#for testing only
#m <- matrix(rnorm(100*20), nrow=20, ncol=100)
odir <- tempdir()
#print(odir)
exec(paste0(fsl_dir, "fslcreatehd ",
nrow(m), # voxels in x
" 1 1 ", # voxels in y and z (always put regressors along x)
ncol(m), # number of timepoints
" 1 1 1", # voxel size in x y z (arbitrary)
" 1 0 0 0 ", #tr, xorigin, yorigin, zorigin (I don't think bptf cares about TR since expects wrt volumes)
" 64 ", file.path(odir, "regressors")), quiet) #64 is double number (higher precision)
#read empty NIfTI into R
nif <- readNIfTI(file.path(odir, "regressors"), reorient=FALSE)
#populate nifti
nif@.Data <- array(m, dim=c(nrow(m), 1, 1, ncol(m))) #add singleton dimensions for y and z
# 20191119 FSL6: some dims are 0, need to be 1
# Error in .writeNIfTI(nim, filename, onefile, gzipped, verbose, warn, compression) :
# all dim elements > dim[1] must be 1
# /usr/lib/fsl/5.0/fslcreatehd 16 1 1 192 1 1 1 1 0 0 0 64 test.nii.gz; Rscript -e 'print(oro.nifti::readNIfTI("test.nii.gz")@dim_)'
# [1] 4 16 1 1 192 1 1 1
# /opt/ni_tools/fsl_6/bin/fslcreatehd 16 1 1 192 1 1 1 1 0 0 0 64 test.nii.gz; Rscript -e 'print(oro.nifti::readNIfTI("test.nii.gz")@dim_)'
# [1] 4 16 1 1 192 0 0 0
nif@dim_[nif@dim_<1] <- 1
#write NIfTI with regressors back to file
writeNIfTI(nif, filename=file.path(odir, "regressors"))
#validation that this has been populated as expected
#xx <- readNIfTI(file.path(odir, "regressors"), reorient=FALSE)
#identical(xx@.Data, array(m, dim=c(nrow(m), 1, 1, ncol(m))))
if (demean) {
exec(paste0(fsl_dir, "fslmaths ", file.path(odir, "regressors"), " -bptf ", hp_volumes, " ", lp_volumes, " ", file.path(odir, "filtered")), quiet)
} else {
exec(paste0(fsl_dir, "fslmaths ", file.path(odir, "regressors"), " -Tmean ", file.path(odir, "tempMean")), quiet)
exec(paste0(fsl_dir, "fslmaths ", file.path(odir, "regressors"), " -bptf ", hp_volumes, " ", lp_volumes, " -add ", file.path(odir, "tempMean"), " ", file.path(odir, "filtered")), quiet)
}
nif.filtered <- readNIfTI(file.path(odir, "filtered"), reorient=FALSE)
#sanity checks on data manipulation
#df <- drop(nif.filtered@.Data)
#df2 <- drop(nif@.Data)
#cor(df[1,], df2[1,])
#mean(df[1,])
#mean(df2[1,])
outmat <- drop(nif.filtered@.Data)
if (transpose) { outmat <- t(outmat) }
##write matrix to file
if (sep == "") { sep <- " " }
write.table(x=outmat, file=out_file, sep=sep, row.names=FALSE, col.names=FALSE)
#cleanup
exec(paste0(fsl_dir, "imrm ", file.path(odir, "regressors"), " ", file.path(odir, "tempMean"), " ", file.path(odir, "filtered")), quiet)