-
Notifications
You must be signed in to change notification settings - Fork 1
/
post_fmriprep.R
476 lines (406 loc) · 18.4 KB
/
post_fmriprep.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
## simple script to handle post-fmriprep processing
require(glue)
require(oro.nifti)
# matrix must be time x units/regions
mat_to_nii <- function(mat, ni_out="mat") {
require(oro.nifti)
if (is.data.frame(mat)) { mat <- as.matrix(mat) }
# this always puts regressors along the x dimension; y and z are singletons
ydim <- zdim <- 1 # size of y and z dimensions
xsz <- ysz <- zsz <- 1 # voxel size in x y z
tr <- 1
xorigin <- yorigin <- zorigin <- 0
run_fsl_command(glue("fslcreatehd {ncol(mat)} {ydim} {zdim} {nrow(mat)} {xsz} {ysz} {zsz} {tr} {xorigin} {yorigin} {zorigin} 64 {ni_out}"))
## read empty NIfTI into R
nif <- readNIfTI(ni_out, reorient = FALSE)
nif <- drop_img_dim(nif) # need to cleanup dim_ attribute to avoid writeNIfTI failure
# populate nifti -- need to transpose to be consistent with column-wise array filling
nif@.Data <- array(t(mat), dim = c(ncol(mat), 1, 1, nrow(mat))) # add singleton dimensions for y and z
nif[is.na(nif)] <- 0 # cannot handle missingness in NIfTIs
# write NIfTI with regressors back to file
writeNIfTI(nif, filename = ni_out) # this returns the filename to the caller
}
nii_to_mat <- function(ni_in) {
checkmate::assert_file_exists(ni_in)
nii <- readNIfTI(ni_in, reorient = FALSE, rescale_data = FALSE)
mat <- t(nii[, 1, 1, ]) # x and z -- make back into time x variables
return(mat)
}
run_fsl_command <- function(args, fsldir=NULL, echo=TRUE, run=TRUE, log_file="", intern=FALSE, stop_on_fail=TRUE) {
#look for FSLDIR in system environment if not passed in
if (is.null(fsldir)) {
#check for FSLDIR in sourced .bashrc
bashrc_fsldir <- character(0)
if (file.exists("~/.profile")) {
bashrc_fsldir <- system("source ~/.profile && echo $FSLDIR", intern=TRUE)
}
#check for FSLDIR in current environment
env <- system("env", intern=TRUE)
if (length(fsldir <- grep("^FSLDIR=", env, value=TRUE)) > 0L) {
fsldir <- sub("^FSLDIR=", "", fsldir)
} else if (!identical(bashrc_fsldir, character(0))) {
fsldir <- bashrc_fsldir
} else {
warning("FSLDIR not found in environment. Defaulting to /usr/local/fsl.")
fsldir <- "/usr/local/fsl"
}
}
#Sys.setenv(LD_LIBRARY_PATH="/gpfs/group/mnh5174/default/sw/openblas/lib")
Sys.setenv(FSLDIR=fsldir) #export to R environment
fslsetup <- paste0("FSLDIR=", fsldir, "; PATH=${FSLDIR}/bin:${PATH}; . ${FSLDIR}/etc/fslconf/fsl.sh; ${FSLDIR}/bin/")
fslcmd <- paste0(fslsetup, args)
ofile <- tempfile(pattern="stdout")
efile <- tempfile(pattern="stderr")
fslcmd <- paste(fslcmd, ">", ofile)
fslcmd <- paste(fslcmd, "2>", efile)
#cat("FSL command: ", fslcmd, "\n")
if (!is.null(log_file)) { cat(args, file=log_file, append=TRUE, sep="\n") }
if (isTRUE(echo)) { cat(args, "\n") }
if (isTRUE(run)) {
retcode <- system(fslcmd)
} else {
retcode <- 0 # no run result (dummy)
}
if (file.exists(efile)) {
stderr <- readLines(efile)
if (identical(character(0), stderr)) stderr <- ""
} else {
stderr <- ""
}
if (file.exists(ofile)) {
stdout <- readLines(ofile)
if (identical(character(0), stdout)) stdout <- ""
} else {
stdout <- ""
}
to_return <- retcode # return exit code of command
# if specified, switch to stdout as return
if (isTRUE(intern)) {
to_return <- stdout # return output of command
attr(to_return, "retcode") <- retcode
}
attr(to_return, "stdout") <- stdout
attr(to_return, "stderr") <- stderr
if (retcode != 0) {
errmsg <- glue("run_fsl_command failed with exit code: {retcode}, stdout: {paste(stdout, collapse='\n')}, stderr: {paste(stderr, collapse='\n')}")
cat(errmsg, "\n", file = log_file, append = TRUE)
if (isTRUE(stop_on_fail)) { stop(errmsg) }
}
return(to_return)
}
out_file_exists <- function(in_file, prefix, overwrite=TRUE) {
# helper subfunction to enforce hyphen after initial postprocessing prefix
p <- function(in_file, prefix) {
has_prefix <- grepl("^\\w+-(sub|confounds).*", in_file, perl = TRUE)
if (isTRUE(has_prefix)) {
return(prefix)
} else {
return(paste0(prefix, "-")) # need to append hyphen
}
}
in_dir <- dirname(in_file)
in_file <- basename(in_file)
# handle extant file
out_file <- glue("{in_dir}/{p(in_file, prefix)}{in_file}")
skip <- FALSE
if (checkmate::test_file_exists(out_file)) {
if (isFALSE(overwrite)) {
message(glue("Processed image already exists: {out_file}. Skipping this step."))
skip <- TRUE
} else {
message(glue("Overwriting image: {out_file}."))
}
}
return(list(out_file=out_file, skip=skip))
}
temporal_filter <- function(in_file, prefix="f", low_pass_hz=0, high_pass_hz=1/120, tr=NULL, overwrite=FALSE, log_file=NULL) {
#checkmate::assert_file_exists(in_file)
checkmate::assert_string(prefix)
checkmate::assert_number(low_pass_hz)
checkmate::assert_number(high_pass_hz)
checkmate::assert_number(tr, lower = 0.01, upper = 30)
stopifnot(low_pass_hz < high_pass_hz)
# handle extant file
res <- out_file_exists(in_file, prefix, overwrite)
if (isTRUE(res$skip)) {
return(res$out_file) # skip out
} else {
out_file <- res$out_file
}
# bptf specifies its filter cutoffs in terms of volumes, not frequencies
fwhm_to_sigma <- sqrt(8 * log(2)) # Details here: https://www.mail-archive.com/hcp-users@humanconnectome.org/msg01393.html
if (is.infinite(high_pass_hz)) {
#message("Low-pass filtering")
hp_volumes <- -1 # do not apply high-pass
} else {
hp_volumes <- 1 / (high_pass_hz * fwhm_to_sigma * tr)
}
if (is.infinite(low_pass_hz) || low_pass_hz==0) {
#message("High-pass filtering")
lp_volumes <- -1 # do not apply low-pass
} else {
lp_volumes <- 1 / (low_pass_hz * fwhm_to_sigma * tr)
}
temp_tmean <- tempfile()
run_fsl_command(glue("fslmaths {in_file} -Tmean {temp_tmean}"), log_file=log_file)
run_fsl_command(glue("fslmaths {in_file} -bptf {hp_volumes} {lp_volumes} -add {temp_tmean} {out_file} "), log_file = log_file)
tnif <- paste0(temp_tmean, ".nii.gz")
if (checkmate::test_file_exists(tnif)) { unlink(tnif) } # cleanup
return(out_file)
}
apply_aroma <- function(in_file, brain_mask=NULL, prefix="a", mixing_file, noise_file, overwrite=FALSE, log_file=NULL, use_R=FALSE) {
# checkmate::assert_file_exists(in_file)
checkmate::assert_string(prefix)
if (isFALSE(checkmate::test_file_exists(mixing_file))) {
warning(glue("Cannot find mixing file corresponding to {in_file}. Skipping AROMA regression"))
return(in_file)
}
if (isFALSE(checkmate::test_file_exists(noise_file))) {
warning(glue("Cannot find ICA noise components file corresponding to {in_file}. Skipping AROMA regression"))
return(in_file)
}
# handle extant file
res <- out_file_exists(in_file, prefix, overwrite)
if (isTRUE(res$skip)) {
return(res$out_file) # skip out
} else {
out_file <- res$out_file
}
# just read in the comma-separated noise ICs
noise_ics <- readLines(noise_file, warn=FALSE)
# for some reason, fsl_regfilt blows up when we try to feed a regressors x 1 x 1 x timepoints NIfTI
# fall back to R in this case
if (isTRUE(use_R)) {
cmd <- glue("fsl_regfilt.R {in_file} {mixing_file} {noise_file} 1 {out_file}")
#cat("cmd: ", cmd, "\n")
system(cmd)
} else {
cmd <- glue("fsl_regfilt -i {in_file} -o {out_file} -d {mixing_file} -f {noise_ics}")
if (!is.null(brain_mask) && checkmate::test_file_exists(brain_mask)) {
cmd <- glue("{cmd} -m {brain_mask}")
}
run_fsl_command(cmd, log_file = log_file)
}
return(out_file)
}
spatial_smooth <- function(in_file, prefix="s", fwhm_mm=6, brain_mask=NULL, overwrite=FALSE, log_file=NULL) {
#checkmate::assert_file_exists(in_file)
# handle extant file
res <- out_file_exists(in_file, prefix, overwrite)
if (isTRUE(res$skip)) {
return(res$out_file) # skip out
} else {
out_file <- res$out_file
}
fwhm_to_sigma <- sqrt(8 * log(2)) # Details here: https://www.mail-archive.com/hcp-users@humanconnectome.org/msg01393.html
sigma <- fwhm_mm / fwhm_to_sigma
p2_intensity <- get_image_quantile(in_file, brain_mask, 2, log_file=log_file)
median_intensity <- get_image_quantile(in_file, brain_mask, 50, log_file = log_file)
susan_thresh <- (median_intensity - p2_intensity) * .75 # also see featlib.tcl
# compute mean functional image used in susan
temp_tmean <- tempfile()
run_fsl_command(glue("fslmaths {in_file} -Tmean {temp_tmean}"), log_file=log_file) # save tmean to temporary file
run_fsl_command(glue("susan {in_file} {susan_thresh} {sigma} 3 1 1 {temp_tmean} {susan_thresh} {out_file}"), log_file = log_file)
if (!is.null(brain_mask)) {
# re-threshold image after smoothing so that only brain voxels are retained
run_fsl_command(glue("fslmaths {out_file} -mas {brain_mask} {out_file} -odt float"), log_file = log_file)
}
tnif <- paste0(temp_tmean, ".nii.gz")
if (checkmate::test_file_exists(tnif)) { unlink(tnif) } # cleanup
return(out_file)
}
get_image_quantile <- function(in_file, brain_mask=NULL, quantile=50, log_file=NULL) {
#checkmate::assert_file_exists(in_file)
checkmate::assert_number(quantile, lower=0, upper=100)
if (is.null(brain_mask)) {
# median of non-zero voxels
quantile_value <- as.numeric(run_fsl_command(glue("fslstats {in_file} -P {quantile}"), intern = TRUE, log_file = log_file))
} else {
checkmate::assert_file_exists(brain_mask)
# median of all voxels in mask
quantile_value <- as.numeric(run_fsl_command(glue("fslstats {in_file} -k {brain_mask} -p {quantile}"), intern = TRUE, log_file = log_file))
}
return(quantile_value)
}
intensity_normalize <- function(in_file, prefix="n", brain_mask=NULL, global_median=10000, overwrite=FALSE, log_file=NULL) {
#checkmate::assert_file_exists(in_file)
checkmate::assert_string(prefix)
checkmate::assert_number(global_median)
# handle extant file
res <- out_file_exists(in_file, prefix, overwrite)
if (isTRUE(res$skip)) {
return(res$out_file) # skip out
} else {
out_file <- res$out_file
}
median_intensity <- get_image_quantile(in_file, brain_mask, 50, log_file=log_file)
rescaling_factor <- global_median / median_intensity
run_fsl_command(glue("fslmaths {in_file} -mul {rescaling_factor} {out_file} -odt float"), log_file=log_file)
return(out_file)
}
confound_regression <- function(in_file, to_regress=NULL, prefix="r", brain_mask=NULL, overwrite=FALSE, log_file=NULL) {
#checkmate::assert_file_exists(in_file)
checkmate::assert_file_exists(to_regress)
checkmate::assert_string(prefix)
# handle extant file
res <- out_file_exists(in_file, prefix, overwrite)
if (isTRUE(res$skip)) {
return(res$out_file) # skip out
} else {
out_file <- res$out_file
}
# for reasons that are still somewhat mysterious, fsl_glm produces empty outputs and dies without further comment.
# run_fsl_command(glue("fsl_glm -i {in_file} -d {to_regress} -m {brain_mask} --out_res={out_file}"), log_file=log_file)
# fall back to 3dTproject for regression
regress_cmd <- glue("3dTproject -input {in_file} -prefix {out_file} -ort {to_regress} -polort 0 -mask {brain_mask}")
cat(regress_cmd, "\n", file=log_file, append=TRUE)
system(regress_cmd)
return(out_file)
}
get_fmriprep_outputs <- function(in_file) {
first_chars <- sub("(sub-\\d+_task-[^_]+_run-\\d+).*", "\\1", in_file, perl=TRUE)
bold <- Sys.glob(glue("{first_chars}*preproc_bold*nii*"))
brain_mask <- Sys.glob(glue("{first_chars}*_desc-brain_mask*nii*"))
confounds <- glue("{first_chars}_desc-confounds_regressors.tsv")
melodic_mix <- glue("{first_chars}_desc-MELODIC_mixing.tsv")
noise_ics <- glue("{first_chars}_AROMAnoiseICs.csv")
ret_list <- list(bold = bold, brain_mask = brain_mask, confounds = confounds, melodic_mix = melodic_mix, noise_ics = noise_ics)
ret_list <- lapply(ret_list, function(x) {
ifelse(checkmate::test_file_exists(x), x, NULL)
}) # NULL out missing files
ret_list[["prefix"]] <- first_chars # sub id info
return(ret_list)
}
# primary function to process a given fmriprep subject dataset
process_subject <- function(in_file, cfg="post_fmriprep.yaml") {
checkmate::assert_file_exists(in_file)
#checkmate::assert_list(processing_sequence)
proc_files <- get_fmriprep_outputs(in_file)
sdir <- dirname(in_file)
setwd(sdir)
if (is.list(cfg)) {
# for now, nothing here -- just use list as-is
} else if (checkmate::test_string(cfg)) {
checkmate::assert_file_exists(cfg)
cfg <- yaml::read_yaml(cfg)
}
log_file <- glue(cfg$log_file) #evaluate location of log
complete_file <- paste0(".", basename(proc_files$prefix), "_complete") # evaluate location of log
if (isFALSE(cfg$overwrite) && file.exists(complete_file)) {
message(glue("Already completed postprocessing for {in_file}. Skipping"))
return(NULL)
}
start_time <- Sys.time()
cat("Start fmriprep postprocessing: ", as.character(start_time), "\n", file=log_file, append=TRUE)
cur_file <- proc_files$bold
file_set <- cur_file
# handle confounds, filtering to match MRI data
if ("confound_regression" %in% cfg$processing_sequence || isTRUE(cfg$confound_calculate$compute)) {
confounds <- data.table::fread(proc_files$confounds, na.strings = c("n/a", "NA", "."))
confound_cols <- as.character(union(cfg$confound_regression$columns, cfg$confound_calculate$columns))
noproc_cols <- as.character(union(cfg$confound_regression$noproc_columns, cfg$confound_calculate$noproc_columns)) # no AROMA or filter
if (any(noproc_cols %in% confound_cols)) {
stop("Cannot handle overlaps in noproc_columns and columns for confounds")
}
confounds_to_filt <- subset(confounds, select = confound_cols)
confound_nii <- mat_to_nii(confounds_to_filt, ni_out = tempfile(pattern = "confounds"))
# apply AROMA denoising to confounds if AROMA is applied to MRI data
if ("apply_aroma" %in% cfg$processing_sequence) {
confound_nii <- apply_aroma(confound_nii,
mixing_file = proc_files$melodic_mix,
noise_file = proc_files$noise_ics, overwrite=cfg$overwrite, log_file=log_file, use_R=TRUE
)
}
# apply temporal filter to confounds if temporal filter is applied to MRI data
if ("temporal_filter" %in% cfg$processing_sequence) {
confound_nii <- temporal_filter(confound_nii,
tr = cfg$tr, low_pass_hz = cfg$temporal_filter$low_pass_hz,
high_pass_hz = cfg$temporal_filter$high_pass_hz, overwrite=cfg$overwrite, log_file=log_file
)
}
# read in processed confounds and convert back to time x signals data.frame
filtered_confounds <- data.frame(nii_to_mat(confound_nii))
filtered_confounds <- setNames(filtered_confounds, confound_cols)
if (isTRUE(cfg$confound_calculate$compute)) {
df <- subset(filtered_confounds, select = cfg$confound_calculate$columns)
if (!is.null(cfg$confound_calculate$noproc_columns)) {
noproc_df <- subset(confounds, select=cfg$confound_calculate$noproc_columns)
noproc_df[is.na(noproc_df)] <- 0 # force 0 value -- NAs don't work as regressors
df <- cbind(df, noproc_df)
}
data.table::fwrite(df, file = glue(cfg$confound_calculate$output_file))
}
if ("confound_regression" %in% cfg$processing_sequence) {
df <- subset(filtered_confounds, select = cfg$confound_regression$columns)
if (!is.null(cfg$confound_regression$noproc_columns)) {
noproc_df <- subset(confounds, select=cfg$confound_regression$noproc_columns)
noproc_df[is.na(noproc_df)] <- 0 # force 0 value -- NAs don't work as regressors
df <- cbind(df, noproc_df)
}
to_regress <- glue(cfg$confound_regression$output_file)
data.table::fwrite(df, file = to_regress, col.names = FALSE)
}
}
# loop over processing steps in sequence
for (step in cfg$processing_sequence) {
if (step == "spatial_smooth") {
cur_file <- spatial_smooth(cur_file,
brain_mask = proc_files$brain_mask, prefix = cfg$spatial_smooth$prefix,
fwhm_mm = cfg$spatial_smooth$fwhm_mm, overwrite = cfg$overwrite, log_file = log_file
)
file_set <- c(file_set, cur_file)
} else if (step == "apply_aroma") {
cur_file <- apply_aroma(cur_file, prefix = cfg$apply_aroma$prefix,
brain_mask = proc_files$brain_mask, mixing_file = proc_files$melodic_mix,
noise_file = proc_files$noise_ics,
overwrite=cfg$overwrite, log_file=log_file
)
file_set <- c(file_set, cur_file)
} else if (step == "temporal_filter") {
cur_file <- temporal_filter(cur_file, prefix = cfg$temporal_filter$prefix,
tr = cfg$tr, low_pass_hz = cfg$temporal_filter$low_pass_hz,
high_pass_hz = cfg$temporal_filter$high_pass_hz,
overwrite=cfg$overwrite, log_file=log_file
)
file_set <- c(file_set, cur_file)
} else if (step == "intensity_normalize") {
cur_file <- intensity_normalize(cur_file, prefix = cfg$intensity_normalize$prefix,
brain_mask = proc_files$brain_mask,
global_median = cfg$intensity_normalize$global_median,
overwrite=cfg$overwrite, log_file=log_file
)
file_set <- c(file_set, cur_file)
} else if (step == "confound_regression") {
cur_file <- confound_regression(cur_file, prefix = cfg$confound_regression$prefix,
brain_mask = proc_files$brain_mask,
to_regress = to_regress,
overwrite=cfg$overwrite, log_file = log_file
)
file_set <- c(file_set, cur_file)
}
}
if (isFALSE(cfg$keep_intermediates) && length(file_set) > 2L) {
# initial file is the BOLD input from fmriprep, last file is the final processed image
to_delete <- file_set[2:(length(file_set) - 1)]
for (ff in to_delete) {
cat("Removing", ff, "\n", file = log_file, append=TRUE)
if (file.exists(ff)) unlink(ff)
}
}
end_time <- Sys.time()
cat("End fmriprep postprocessing: ", as.character(end_time), "\n", file = log_file, append = TRUE)
cat(as.character(start_time), as.character(end_time), file = complete_file, sep = "\n")
return(cur_file)
}
# for testing
# sdir <- "/proj/mnhallqlab/studies/bsocial/clpipe/data_fmriprep/fmriprep/sub-221256/func"
# setwd(sdir)
# process_subject("sub-221256_task-clock_run-2_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz",
# cfg = "/proj/mnhallqlab/users/michael/fmri.pipeline/R/post_fmriprep.yaml"
# )
# for testing
# sdir <- "~/longleaf/studies/bsocial/clpipe/data_fmriprep/fmriprep/sub-221256/func"
# setwd(sdir)
# process_subject("sub-221256_task-clock_run-2_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz",
# cfg = "~/fmri_processing_scripts/post_fmriprep.yaml"
# )