-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
executable file
·62 lines (51 loc) · 2.88 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# -*- coding: utf-8 -*-
import json
import os
import numpy as np
import pandas as pd
from models.rdgt import RDGT
class Config(object):
def __init__(self, args):
model_zoo = {
'rdgt': RDGT
}
self.data_flag = args.dataset_name
self.dir_name = args.dir_type
self.graph_flag = args.use_graph
self.set_path_dict()
self.path = self.path_dict['path']
self.user_dataset = self.path + 'stu_train.csv'
self.group_dataset = self.path + 'group_{}.csv'
self.user_in_group_path = self.path_dict['g_m_d']
self.group_ques_path = self.path_dict['g_q_d']
self.ques_concept_path = self.path_dict['q_c_d']
self.model_name = args.model_name
self.model = model_zoo[self.model_name]
self.metadata = json.load(open(self.path_dict['meta'], 'r'))
if self.graph_flag:
self.graph_matrix = np.array(pd.read_csv(self.path_dict['graph_matrix']))
self.group_node_sim = np.array(pd.read_csv(self.path_dict['group_node_sim']))
self.group_node_degree = np.array(pd.read_csv(self.path_dict['group_node_degree']))
self.group_node_related = np.array(pd.read_csv(self.path_dict['group_node_related']))
self.group_ques_sim = np.array(pd.read_csv(self.path_dict['group_ques_sim']))
self.result_path = "./results/{}/".format(self.data_flag)
if not os.path.exists(self.result_path):
os.mkdir(self.result_path)
self.embedding_size = self.metadata['num_concepts']
self.epoch = args.epoch
self.batch_size = args.bsz
self.lr = args.lr
self.drop_ratio = args.dropout
self.topK = args.topk
def set_path_dict(self):
self.path_dict = {}
self.path_dict['path'] = './datas/{}/{}/'.format(self.data_flag, self.dir_name)
self.path_dict['g_m_d'] = "./datas/{}/{}/group_stu_dict.json".format(self.data_flag, self.dir_name)
self.path_dict['g_q_d'] = "./datas/{}/{}/group_ques_dict.json".format(self.data_flag, self.dir_name)
self.path_dict['q_c_d'] = "./datas/{}/{}/ques_concept.json".format(self.data_flag, self.dir_name)
self.path_dict['meta'] = "./datas/{}/{}/metadata.json".format(self.data_flag, self.dir_name)
self.path_dict['graph_matrix'] = "./datas/{}/{}/graph_matrix.csv".format(self.data_flag, self.dir_name)
self.path_dict['group_node_sim'] = "./datas/{}/{}/group_node_sim.csv".format(self.data_flag, self.dir_name)
self.path_dict['group_node_degree'] = "./datas/{}/{}/group_node_degree.csv".format(self.data_flag, self.dir_name)
self.path_dict['group_node_related'] = "./datas/{}/{}/group_node_related.csv".format(self.data_flag, self.dir_name)
self.path_dict['group_ques_sim'] = "./datas/{}/{}/group_ques_sim.csv".format(self.data_flag, self.dir_name)