Skip to content

Latest commit

 

History

History
123 lines (87 loc) · 4.4 KB

330.patching-array.md

File metadata and controls

123 lines (87 loc) · 4.4 KB

题目地址(330. 按要求补齐数组)

https://leetcode-cn.com/problems/patching-array/

题目描述

给定一个已排序的正整数数组 nums,和一个正整数 n 。从 [1, n] 区间内选取任意个数字补充到 nums 中,使得 [1, n] 区间内的任何数字都可以用 nums 中某几个数字的和来表示。请输出满足上述要求的最少需要补充的数字个数。

示例 1:

输入: nums = [1,3], n = 6
输出: 1
解释:
根据 nums 里现有的组合 [1], [3], [1,3],可以得出 1, 3, 4。
现在如果我们将 2 添加到 nums 中, 组合变为: [1], [2], [3], [1,3], [2,3], [1,2,3]。
其和可以表示数字 1, 2, 3, 4, 5, 6,能够覆盖 [1, 6] 区间里所有的数。
所以我们最少需要添加一个数字。
示例 2:

输入: nums = [1,5,10], n = 20
输出: 2
解释: 我们需要添加 [2, 4]。
示例 3:

输入: nums = [1,2,2], n = 5
输出: 0

前置知识

  • 贪心
  • 前缀和

公司

  • 暂无

思路

这道题核心点正如标题所言: 贪心 + 维护端点信息

贪心的思想这里不多说了,思路和官方题解是一样的。

先不考虑需要增加数字的情况,即没有任何缺失的数字。

这里给了几个例子方便大家理解。

左侧是 nums 数组, 右侧是 nums 可以覆盖的区间 [start, end] (注意是左右都闭合)。当然如果你写出别的形式,比如左闭右开,那么代码要做一些调整。

[1] -> [1,1] [1,2] -> [1,3] [1,2,3] -> [1,6] [1,2,3,4] -> [1,10]

可以看出,可以覆盖的区间,总是 [1, x] ,其中 x 为 nums 的和。

接下来,我们考虑有些数字缺失导致无法覆盖的情况。

算法:

  1. 初始化覆盖区间为 [0, 0] 表示啥都没覆盖,目标区间是 [1, n]
  2. 如果数组当前数字无法达到前缀和,那么需要补充数字,更新区间为 [1, 前缀和]。
  3. 如果数组当前数字无法达到前缀和,则什么都不需要做。

那么第二步补充数字的话需要补充什么数字呢?如果当前区间是 [1,x],我们应该添加数字 x + 1,这样可以覆盖的区间为 [1,2*x+1]。如果你选择添加小于 x + 1 的数字,达到的效果肯定没这个区间大。而如果你选择添加大于 x + 1 的数字,那么会导致 x + 1 无法被覆盖。这就是贪心的思想。

关键点解析

  • 维护端点信息,并用前缀和更新区间

代码

代码变量说明:

  • furthest 表示区间右端点
  • i 表示当前遍历到的数组索引
  • ans 是需要返回的答案
class Solution:
    def minPatches(self, nums: List[int], n: int) -> int:
        furthest = i = ans = 0
        while furthest < n:
            # 可覆盖到,直接用前缀和更新区间
            if i < len(nums) and nums[i] <= furthest + 1:
                furthest += nums[i] #  [1, furthest] -> [1, furthest + nums[i]]
                i += 1
            else:
                # 不可覆盖到,增加一个数 furthest + 1,并用前缀和更新区间
                # 如果 nums[i] > furthest + 1,说明我们必须添加一个数 x,其中 1 <= x <= furthest + 1,从贪心的角度我们应该选择  furthest + 1,这在前面已经讲过
                furthest = 2 * furthest + 1 # [1, furthest] -> [1, furthest + furthest + 1]
                ans += 1
        return ans

如果你的区间信息是左闭右开的,代码可以这么写:

class Solution:
    def minPatches(self, nums: List[int], n: int) -> int:
        furthest, i, ans = 1, 0, 0
        # 结束条件也要相应改变
        while furthest <= n:
            if i < len(nums) and nums[i] <= furthest:
                furthest += nums[i] #  [1, furthest) -> [1, furthest + nums[i])
                i += 1
            else:
                furthest = 2 * furthest # [1, furthest) -> [1, furthest + furthest)
                ans += 1
        return ans

复杂度分析

  • 时间复杂度:$O(N)$。
  • 空间复杂度:$O(1)$。

大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 37K star 啦。 大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。