forked from togethercomputer/MoA
-
Notifications
You must be signed in to change notification settings - Fork 1
/
show_mt_bench_result.py
130 lines (112 loc) · 4.54 KB
/
show_mt_bench_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""
Usage:
python3 show_result.py --mode [single|pairwise-baseline|pairwise-all]
"""
import argparse
import pandas as pd
def display_result_single(args):
if args.input_file is None:
input_file = (
f"outputs/{args.bench_name}/model_judgment/{args.judge_model}_single.jsonl"
)
else:
input_file = args.input_file
print(f"Input file: {input_file}")
df_all = pd.read_json(input_file, lines=True)
df = df_all[["model", "score", "turn"]]
df = df[df["score"] != -1]
if args.model_list is not None:
df = df[df["model"].isin(args.model_list)]
print("\n########## First turn ##########")
df_1 = df[df["turn"] == 1].groupby(["model", "turn"]).mean()
print(df_1.sort_values(by="score", ascending=False))
if args.bench_name == "mt_bench":
print("\n########## Second turn ##########")
df_2 = df[df["turn"] == 2].groupby(["model", "turn"]).mean()
print(df_2.sort_values(by="score", ascending=False))
print("\n########## Average ##########")
df_3 = df[["model", "score"]].groupby(["model"]).mean()
print(df_3.sort_values(by="score", ascending=False))
def display_result_pairwise(args):
if args.input_file is None:
input_file = (
f"outputs/{args.bench_name}/model_judgment/{args.judge_model}_pair.jsonl"
)
else:
input_file = args.input_file
print(f"Input file: {input_file}")
df_all = pd.read_json(input_file, lines=True)
df_all = df_all[(df_all["g1_winner"] != "error") & (df_all["g2_winner"] != "error")]
model_list = (
df_all["model_1"].unique().tolist() + df_all["model_2"].unique().tolist()
)
model_list = list(set(model_list))
list_res = []
# traverse df row by row
for index, row in df_all.iterrows():
if args.model_list is not None and row["model_1"] not in args.model_list:
continue
if args.baseline_model is not None:
if args.baseline_model not in [row["model_1"], row["model_2"]]:
continue
if row["g1_winner"] == "tie" or row["g1_winner"] != row["g2_winner"]:
list_res.append({"model": row["model_1"], "win": 0, "loss": 0, "tie": 1})
list_res.append({"model": row["model_2"], "win": 0, "loss": 0, "tie": 1})
else:
if row["g1_winner"] == "model_1":
winner = row["model_1"]
loser = row["model_2"]
else:
winner = row["model_2"]
loser = row["model_1"]
list_res.append({"model": winner, "win": 1, "loss": 0, "tie": 0})
list_res.append({"model": loser, "win": 0, "loss": 1, "tie": 0})
df = pd.DataFrame(list_res)
df = df.groupby(["model"]).sum()
# remove baseline model
if args.baseline_model is not None:
df = df[df.index != args.baseline_model]
# add win rate
df["win_rate"] = df["win"] / (df["win"] + df["loss"] + df["tie"])
df["loss_rate"] = df["loss"] / (df["win"] + df["loss"] + df["tie"])
# each tie counts as 0.5 win + 0.5 loss
df["win_rate_adjusted"] = (df["win"] + 0.5 * df["tie"]) / (
df["win"] + df["loss"] + df["tie"]
)
# print(df.sort_values(by="win_rate", ascending=False))
# print(df.sort_values(by="loss_rate", ascending=True))
print(df.sort_values(by="win_rate_adjusted", ascending=False))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--bench-name", type=str, default="mt_bench")
parser.add_argument("--input-file", type=str)
parser.add_argument("--judge-model", type=str, default="gpt-4")
parser.add_argument("--baseline-model", type=str, default="gpt-3.5-turbo")
parser.add_argument(
"--model-list",
type=str,
nargs="+",
default=None,
help="A list of models to be evaluated",
)
parser.add_argument(
"--mode",
type=str,
default="single",
choices=["pairwise-baseline", "pairwise-all", "single"],
help=(
"Evaluation mode. "
"`pairwise-baseline` runs pairwise comparision against a baseline. "
"`pairwise-all` runs pairwise comparision between all pairs. "
"`single` runs single answer grading."
),
)
args = parser.parse_args()
if args.mode == "single":
display_result_func = display_result_single
else:
if args.mode == "pairwise-all":
args.baseline_model = None
display_result_func = display_result_pairwise
print(f"Mode: {args.mode}")
display_result_func(args)