-
Notifications
You must be signed in to change notification settings - Fork 0
/
Optical_Illusion_CalcIII_Lee.nb
4248 lines (4175 loc) · 191 KB
/
Optical_Illusion_CalcIII_Lee.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 195069, 4240]
NotebookOptionsPosition[ 189637, 4146]
NotebookOutlinePosition[ 190070, 4163]
CellTagsIndexPosition[ 190027, 4160]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell["\<\
In this project, we explored how partial derivatives fit curves to a set of \
lines through calculus and graphing. Our project was divided into two main \
parts. In the first part, we had to formulate a function of two variables \
that allowed an \[OpenCurlyDoubleQuote]n\[CloseCurlyDoubleQuote] amount of \
lines to be plotted onto one graph; this function was based off of the \
general function of a line, y=mx+b. For the second part of the project, we \
used partial derivatives with respect to \[OpenCurlyDoubleQuote]n\
\[CloseCurlyDoubleQuote] to find the equation of the curve that the lines \
created.\
\>", "Text",
CellChangeTimes->{
3.667683586024025*^9, {3.667683622686548*^9, 3.667683640727415*^9}, {
3.6676836818012*^9, 3.6676837659722433`*^9}, {3.667683817833292*^9,
3.6676839192551117`*^9}, {3.6676839934178634`*^9, 3.667683993471431*^9}, {
3.667684075871105*^9, 3.6676841020999265`*^9}, {3.667684134657844*^9,
3.6676842728012104`*^9}, {3.6676844193559504`*^9,
3.6676844644401455`*^9}, {3.667684511624752*^9, 3.667684535496887*^9}, {
3.6676845685317507`*^9, 3.6676846532422056`*^9}, {3.667684860582012*^9,
3.667684861747212*^9}, {3.667685091414913*^9, 3.667685101987298*^9}, {
3.667686169848305*^9, 3.667686179328429*^9}, {3.8232966118417087`*^9,
3.8232966128030834`*^9}},ExpressionUUID->"816848b1-4ab9-4b45-b4de-\
7da331b2adab"],
Cell[TextData[{
"To begin with, in order to create a function of two variables that have \
varying values of n, we first had to recognize that each line that creates a \
curve is a straight line with a y-intercept of n and an x-intercept of \
(16-n). Luckily, these two points can be easily used in the slope-intercept \
form of a line where the slope is ",
Cell[BoxData[
FormBox[
FractionBox[
RowBox[{"-", "n"}],
RowBox[{"16", "-", "n"}]], TraditionalForm]],ExpressionUUID->
"21307843-e19c-4a71-9187-58eece08f617"],
" and the y-intercept is n. After placing this in slope-intercept form, we \
get the equation below."
}], "Text",
CellChangeTimes->{{3.6676507023450017`*^9, 3.667650732146068*^9}, {
3.6676510355763865`*^9, 3.667651167078891*^9}, {3.667652176916668*^9,
3.667652235013591*^9}, {3.6676790365559244`*^9, 3.667679059414285*^9},
3.667679091100246*^9, {3.667679972329053*^9, 3.6676799761187963`*^9}, {
3.6676842855971375`*^9, 3.6676842895336547`*^9}, {3.667731437490681*^9,
3.667731439389671*^9}, {3.667731481038285*^9, 3.6677314812755127`*^9}, {
3.6677315263073735`*^9,
3.6677315277447643`*^9}},ExpressionUUID->"1ec03645-58c3-4a4c-bb8f-\
6d115095f2b2"],
Cell[BoxData[
RowBox[{
RowBox[{"f", "[",
RowBox[{"x_", ",", "n_"}], "]"}], ":=",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"-", "n"}],
RowBox[{"16", "-", "n"}]], "*", "x"}], "+", "n"}]}]], "Input",ExpressionU\
UID->"bdbaf8b3-2222-4ca4-954f-c5dd598b7ffd"],
Cell[TextData[{
"We then used the Table function in ",
StyleBox["Mathematica",
FontSlant->"Italic"],
" in order to get all of the different slope-intercept equations for values \
of n from n=1 to n=15. Using ContourPlot, we were able to graph all of these \
lines onto one plot. The only addition we needed to include in the \
ContourPlot versus the Table was to set all of the equations equal to y, or \
f(x). Looking at the curve, we predicted that the shape is a quarter of a \
circle that is centered at (16,16) with a radius of 16. We guessed this \
because the curve created has symmetry at the line y=x, which suggests the \
curve makes a perfect circular path. "
}], "Text",
CellChangeTimes->{{3.667653594556106*^9, 3.6676536438436785`*^9}, {
3.667654157393814*^9, 3.667654251267215*^9}, {3.6676542865081644`*^9,
3.667654479938092*^9}, {3.667679120526313*^9, 3.6676791606966314`*^9}, {
3.667680025980942*^9, 3.667680055267457*^9}, {3.6676828995627904`*^9,
3.6676829004120216`*^9}, {3.667683347074683*^9, 3.667683352886524*^9}, {
3.667683433874406*^9, 3.6676834498592443`*^9}, {3.6676849468560658`*^9,
3.667684968122901*^9}, {3.667685051790494*^9,
3.667685051922586*^9}},ExpressionUUID->"45ff2eef-7cb9-4691-8460-\
340cd2c6c3cd"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{"f", "[",
RowBox[{"x", ",", "n"}], "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"{",
RowBox[{
"1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",",
"8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14",
",", "15"}], "}"}]}], "}"}]}], "]"}]], "Input",ExpressionUUID->\
"cb3cf0ea-650e-49f8-890a-ffec31a0aa35"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"1", "-",
FractionBox["x", "15"]}], ",",
RowBox[{"2", "-",
FractionBox["x", "7"]}], ",",
RowBox[{"3", "-",
FractionBox[
RowBox[{"3", " ", "x"}], "13"]}], ",",
RowBox[{"4", "-",
FractionBox["x", "3"]}], ",",
RowBox[{"5", "-",
FractionBox[
RowBox[{"5", " ", "x"}], "11"]}], ",",
RowBox[{"6", "-",
FractionBox[
RowBox[{"3", " ", "x"}], "5"]}], ",",
RowBox[{"7", "-",
FractionBox[
RowBox[{"7", " ", "x"}], "9"]}], ",",
RowBox[{"8", "-", "x"}], ",",
RowBox[{"9", "-",
FractionBox[
RowBox[{"9", " ", "x"}], "7"]}], ",",
RowBox[{"10", "-",
FractionBox[
RowBox[{"5", " ", "x"}], "3"]}], ",",
RowBox[{"11", "-",
FractionBox[
RowBox[{"11", " ", "x"}], "5"]}], ",",
RowBox[{"12", "-",
RowBox[{"3", " ", "x"}]}], ",",
RowBox[{"13", "-",
FractionBox[
RowBox[{"13", " ", "x"}], "3"]}], ",",
RowBox[{"14", "-",
RowBox[{"7", " ", "x"}]}], ",",
RowBox[{"15", "-",
RowBox[{"15", " ", "x"}]}]}], "}"}]], "Output",
CellChangeTimes->{3.6675999530398803`*^9,
3.667636407726894*^9},ExpressionUUID->"7cb4f383-8e4b-4422-b942-\
1b220b78144c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"P", "=",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"y", "==",
RowBox[{"1", "-",
FractionBox["x", "15"]}]}], ",",
RowBox[{"y", "==",
RowBox[{"2", "-",
FractionBox["x", "7"]}]}], ",",
RowBox[{"y", "==",
RowBox[{"3", "-",
FractionBox[
RowBox[{"3", " ", "x"}], "13"]}]}], ",",
RowBox[{"y", "==",
RowBox[{"4", "-",
FractionBox["x", "3"]}]}], ",",
RowBox[{"y", "==",
RowBox[{"5", "-",
FractionBox[
RowBox[{"5", " ", "x"}], "11"]}]}], ",",
RowBox[{"y", "==",
RowBox[{"6", "-",
FractionBox[
RowBox[{"3", " ", "x"}], "5"]}]}], ",",
RowBox[{"y", "==",
RowBox[{"7", "-",
FractionBox[
RowBox[{"7", " ", "x"}], "9"]}]}], ",",
RowBox[{"y", "==",
RowBox[{"8", "-", "x"}]}], ",",
RowBox[{"y", "==",
RowBox[{"9", "-",
FractionBox[
RowBox[{"9", " ", "x"}], "7"]}]}], ",",
RowBox[{"y", "==",
RowBox[{"10", "-",
FractionBox[
RowBox[{"5", " ", "x"}], "3"]}]}], ",",
RowBox[{"y", "==",
RowBox[{"11", "-",
FractionBox[
RowBox[{"11", " ", "x"}], "5"]}]}], ",",
RowBox[{"y", "==",
RowBox[{"12", "-",
RowBox[{"3", " ", "x"}]}]}], ",",
RowBox[{"y", "==",
RowBox[{"13", "-",
FractionBox[
RowBox[{"13", " ", "x"}], "3"]}]}], ",",
RowBox[{"y", "==",
RowBox[{"14", "-",
RowBox[{"7", " ", "x"}]}]}], ",",
RowBox[{"y", "==",
RowBox[{"15", "-",
RowBox[{"15", " ", "x"}]}]}], ",",
RowBox[{"y", "\[Equal]", "x"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "5"}], ",", "35"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "5"}], ",", "35"}], "}"}], ",",
RowBox[{"Axes", "\[Rule]", "True"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.667299064777807*^9, 3.667299066810328*^9}, {
3.667600095063218*^9, 3.6676000971040783`*^9}, {3.6676025932489653`*^9,
3.6676025964858327`*^9}, {3.6676050793403206`*^9, 3.667605085463771*^9}, {
3.667636580569703*^9, 3.6676365851614356`*^9}, {3.667636646764665*^9,
3.667636700770731*^9}, {3.667636980365327*^9, 3.6676369836854973`*^9}, {
3.6676849931163025`*^9, 3.6676850054552956`*^9}, 3.6676850446090755`*^9, {
3.6676858101294613`*^9, 3.6676858244658203`*^9}, {3.6676867308914475`*^9,
3.667686740119038*^9},
3.667726162557345*^9},ExpressionUUID->"f31b8526-bab1-4973-a43d-\
27e87e57bc20"],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJyFXAl4F9W1/5MFkhCzA9mAEEIgBCS7ISxzUrtRcK1FLK1StO/ZvuJCra99
Vl9qeVp9damt3XBBixZcWrQ+alt0BmulWKuUUgpFBYJAENAkhC0IdP73/H5n
mLTfK1++b5j/3Llz77nn/M5yz7ljFl578edTEonEE2mJRPLq/nW0y9xPJf8d
9retXrRtdXO7LHL/6fObNt/+Sn9eu5TuP/fKm6/u8++rmnVf1XqRvulvHAr/
/HHh7aw7Rb6b/H3WIf+qm69+Kvc8kV/MTL7Zq88LRL7nnvf6bya7fcGT590H
evDck1mu4x7/GvfdmVKX/dvwr1vv/22muJ8Xdfvf/MEnuxffOUNe+kPNV6em
v+/rd2fIsr1fe2jv197zByXnkzdDdG7v+Z27i9Y8kDJdDi3Ouvz8tft9/e40
edv1t1/f/9U0meO+v9/3ksP+rzYZ4ybcpeNd1Calt32u+LbPdel4F7ZhPl2+
0mmquGbb9vi/TF6HThV9b7evBJ4K+u72H7w1nEBvq1ywNjmB3b6b93PnSLX7
T6f2f9856L/TP7Fh3ujS/zhHOkKy3nV4p47nsy0Y/3b/E27cLZj/2/6nR4cD
39Us7nrlW0q/wc1Yz62gb5MUu/ls0fHOb8L4N+t4VzXKqdPJf3/W9Z7VKN9x
141+SM1bf/DnBilIXj+5QZ9f1iAVbtyvaX/b6tH/7/0bkmSfXS8H3Iu/1fml
1IPea0HfOqlw7Z/3f/JMknGmyL2v9Iczf0LHO3eKBK7fx3V9E2dLIvaP98um
O7qtnCQ/0fbegvOThJ4ki7Q/T+lVK3n6Pc+N90SNfEzH45U5Pq+RXTpeT/lr
ghTpfDw33vPGy2idr/fX25MdV5Me+nzROKzfRk+HVSU67k3ob6wonTZ7ut6V
XA+97x3D9fKUTyrkUl1P9D+a66393TEK8rHdG+bGUSo3K794ut4louvYqe9P
LpEq5TfvrsOPhBQvIj/qeBNF5FdPp1FIfvZUTvMx/j3ex3D/PO7d5w5m43td
mF825tflDb08uSDZMlrlS8fXkgL534/1GYT57PeOJYe3+bTXrfKL8b1nV373
IZV/7wrQaa3ig3ct+F7H3+1RTusVX7yPA3eAP8oP206Aj3sw30GBzqfXa0zi
4Ya04BnFN32+PAPPDym97ssOgI+eG/7teQHwU+n/dH6g69JHegefUvy1e32e
Dr4uCHQc6ZDL3EC/kyb8XvqUn+7YXZSG9ll4P1VWPpH8lxI8qVfhfBwOLU6R
HNe+2yfdU919F+afMFxzemBDQi4Ejik+J+QDN57toNspW49k71mXn/K0v25P
+fkk5veBXfldJ56lJ7xLXf/p8jW3oMfRLgPjPm78dMQR9iie50PejnhKx3y5
PcluxUeMn/U90ns4+PkQ7ouF60t5ucQxXA+el+H9bk/pOEpmuOU9YPI42NH/
ANpXoH/ya6XJh+rbSvmS+85uk/+FTmB3o/9KuQTyp++Pw7ruMHzpcAR+21Nc
qZYtulB63zFeKl2/mwy/pusCeirXNTIMeKb9TgS+v2T4GDhc+zn6myT3uueP
+k+58U0CXq8wPNbnL+F+imxy4/kD9F8d6LvR8P5ehzubtX1QJ+e7Blt9nX+9
NDj+2mH6xMHZIzvRX6PxpbsV6qu9pq8yHM50+coPjTIc+lvp3wT6HzR96Lp/
5j303wx6d2N8zaLtekzfrtiRNCx6QY8WOQJ7SOdPfd5n+jwEo5BDDmO8rfI3
N4GjGF+rOPh66KjZC4pLxzHeqaBfP563gb9ORPaJw5cPMN420XGexPimyZ+S
o5t+2uyfA8nmT53GeKdjvolA72cYTrh7mQE8HhTQ3nLk/eqgQPlphix0AD8o
0PHOxPqkBLTnVL5T9XnCQ3+p2n/gYX5pAe3FuqQ4rUlD/wJ9lI7+BeuRHtAe
/b7Dm8Hovx3fx31FO+g5BDjaLq8m1cOUIYEjz8R2+aOjzxBtfx3fx31oH2u/
GcBp3hepWXIx2p8oVFwO7x+7oj/8KwyGXdEz7IqL2uXOnx8L/woDN+zJ7Rh/
oY1nQbL5Y4XBgp7kG+3yTLL5nXie0a78tLhQ6XlEpPT+i0ruvwjf6xXQrzBw
8rJLlD8mFwYrvtm24pt/E/lL+8hN7SMLjV5/nnJy45STBfr+i3h/X0HQm/z8
wyLH3YALtL+lIne9uuLbr64o0Pd/JMofywsCR7Z7BHqoIFB+FPn45y/56Ocv
KdDxni9qL5QVBEvC4bRNEPlwcjib8m291/z4yV/9+Mn8AGoN8pMPPUf/AM9v
8NTfyMwPJr/YWfviQk++7eibZ/y2LP3T4V+ejn82/IeDucGNFw75yoW3z5AZ
jjA5xs95O/Nywj8dT+UM1Sfrzwp0HNPlyGy/b7afHTzsBHW66V33/vFpMtvR
Y2gQ9y+GBkE4vM4np8mVbl2HKj9taFP/pCMzoPw+8e0kgTOCjK+EA9wwVf4n
SacVQ3Q+j09V+s0HP4b4cOPC8eHfYOWnm1uVn1rSg4vC6Q05fI48mZxeG+Qp
xJ+Pti45t3VJauBw4RLgU0FqoLjfYvLuvlML/+JgIiDeFSWpszMRLP1R+K+k
Rf70WvJfQvtPaZYJroOThqfBupvWrLvpA39XOP3amU2yJ3l9sV/xeWsj9PVx
w+t5X26+9MvNR30H4z9vgHwd9ie59W0Qd+08ZPqgb9T7PeGffu+2ernOfbfb
1/Wtk75lOe+Gf5F/4eRlH/ynOlnj+unynVoorjN9Qn22YssdD2654y3/lt9d
+vXfXTpZUv83yWBbfGdPDp8kL7v2r/vUl3WOPoHakS/XiO86XOrlJkexrEb6
L08ywGOmj/PceNar/l88Xp51/W30HnXDHifPJqdb+7bp+2zX/w7V1xXj5KQj
1E7o7yq5wfHDHs/J4xtjzd5w7/+xEvbAu2ZvbIF90tSY/Fcpv3freUDtuJsq
ZKxr12P2zUaHF72eylm5lCfFt/2w9ndxOeh32Ownx27nHlN/4OkR4K9+b5XD
tWHiXh/5gdlnDzp6n/Rcs0z6G6e8L7gOzhLaibT/vjH86vBvkDzh+Dxb3DJ9
fZDyTUeqXfneczI0/EuTLuVDT9kjDXq4D3Z8utFt7xd/tueLPxssexw9d8Gu
HSyfceN5Qddx/RDxkp/93TrfXS7NMD4qceubKdeCLxV/MkXbJYJ57j9DTe7m
JOGlD/fLBwEXs2FXpAact/aTpXqnJcdw6JZ9Pwj/cqTBrWdu0KhXw13VB3mm
t7Ymyf1gHvzSafa7fof2RaHh0wbHWIXAgzb4fwUB7RN9v8DwSe3XfMWnRa0Y
Zx6et6J9nuGT0jdH8Wc+4x85wNMWEWdeZQPfW+L4G+LXm8Bb4tXLzkEhHjej
P/hFLc3go4yAeLUB+l/7bTL7QdenCf54utJ9dSPkIy0gfv0N9oy7LWg0+0f7
a5AFsI+UHg227koH4l0iIL5tgL2m46yXxeo/KX4drMN8+g3fumA/6nym0N+B
vXc24nO9A+In3b7qt8ng04OIp00yPtb+a/F+Z4R3sM/1OxNlq76A92vM/ife
JWL+wgR8f9l07W+83Ab/Q+dVLUvUXzD8o3+j70X+EPFvHvwlnX+Ef0rPSvPH
iH/T4b/peCrhx76P9yuwnocM/26DP6nrNhK4chzPy2DPnjD8uwb+rn6/GOM5
pfg2a7jhkvJHEeibQjkU+uuQM4w/FXZeHt5PNzzU+Mdg+avKgRCvtL8Mu06A
gaX2cKaNQ/vNEvrxes1CP0c8t9x12dAjfeaHk67XAKdJd6VXjuzAuml/OcYX
nAf5TP3pPMhVH/g43/wcbV8Qt1NCulDO9PdCxH0zAtKRuEA6EzeUf4vk/4A7
+v6wATg23HDRLccT0X3xZ2/400dGjDQcVHqUC+M7St5yyEUu+i+z73/6eOb1
c28phZ6CXSilWI/MgHyk+iBV728stvk/cP/Def++e4R8VPkQdtFw0O+oyu3T
w8VzdO3zS9yCDDd6b69vXvWfc4ZBrrar3fJOkcllnH6I75QV2vqOef3VC771
iwLgcp+n/ms++PGoxsEuzjf+uuqLC97/YSn4dnmqtivINT4kP4EeduXvc846
MPKTqUPlLaUn8DhT5e5p8MnBISY/4eKEK5Su8106DPYz+b4kzvd3ID66PiGk
+9xbPhSSOCE5ju9LZai74vmNIyHv/YYPz0FO3HifrUA85RDiLZXyuOOfyP7q
eOHKkCJdakesrET7LsOrWLwoxLdcx29vWTy5X+Pzho/ixhugfbWtoxvv96tl
gZvgWn+8+/542eL632z4vMC9vwNx0BrjE3e/ZCLo3m34X+XWv1f1y02TZCL4
7qgD1kky08nXMdM35W78J1VfLD5brncEPOUrzk4xvn4T93Nwr+q4Dv5ISkB9
l3Xk7pXfeCE1uDIJM4Pr5RYHgOkaT6irV7umY7Dp0yWO3hmBzqvB5NDdVjcq
Xyw/y/T5B0taa70xwIXljeQ7xZHKJl2fpXnQ503mn9KemPn44HCE+Trekc3K
b1fRP26W8i3TwhbEmRbDFY0vNNi9ikcD9EOhzed54I7SqV4uxPc/gfvZuCe9
1gDnFGfqgJM5gcZZpxg9uF5pwFGVq0mYfzq+V4vvDQrID3MG3M8+c/3C+xhu
z6+BnB03/psA3B8H/tT+enzdN6g2flS7exy+j/2wkP+7YX9QXvS6ak38nv94
v2w65dGHnlL7sFLatX/g2pi4P7WoAjgS+UdV0IvKPyMRXzyO/YcStB8kMVz/
J/eLcE980t8Zr06H3VI0QL8TtzMYh0G/meRL4NVQ4FheHG8TOXbl76uhr/kd
9sNxrYb+1X5PY96FssLhXL/5daQb7R597xXg4AhbV9LhWvCF8nmZ8Q3tLuXP
NMjNKGlyOAM+DddBxzcU/lOF8bV+v0I+DLnQ9RiD9ogrhfeUO70Sh8+23933
F+BeCk1eNM5aEOi+9GTDA9f/y5N03EEe4kmTZNS668vXXZ8XuOZTauP+TE0t
4kPZJk8Vrn12kO6+Vyt57pqt876rRsfTMSRwUf55Nea/UL7eab17V+vd8CN7
x6N9SrAzGca+dbzR2dF/brU49XK63+TrQuQHuHX5TRXi7d3+URfGHxuPx1eM
hX7a5lO+Em78r6n+WDJGDrnn67AfWGF84tpvHA18etfkS+eP+MTScvDBUcRT
yjHeo2Z/Q9B1XlfhviMhbtuuv9j42DWfDLuug/ttRTI1Sa5dGSpHRwrwPAv7
EPkD7JVcu/J3fT8PcbZM8EsBnqfZd9QeStH7oMjGpXpgmDzk9un6Pdp3isPH
VL5khNnnur4jRNdzr9FB+9ur7YMSo/Pi8iRBS6RGDT/Iaylw+DnsU5Tburrp
tI6S+x29D+jzYJQscvTo8blOqjdO6PNlFcZXOp8xOv6D2AfYMUZcfsatQwLy
ietmflZAPqJc6PzGQo8ijrCgSta5fQXGKegXFgU6v+herxMtrqH0qYFe5f5q
jcmtfneCqL2UZ3L0K+hRfX+8jU/fGw9/h3GHarPn9f1q2D3pNl74ddDrVUYv
xauqAfs8Y6U2picrsV/bDb1XaeuluDxGHnL9bET7Cvmqu3/J5Ap+O/B5lPEH
8VZ/7zU/F/tS/+DnKh0GyNWiEcbv2o7+Ff1R+r1Z5udSfuj/abs8u/J3tuN7
7If98jv8LsfBccX972KbB+fFeXLepAPpEtdroyw+Qbp2gM6k+wNYB65LDC/D
dUvBOnJdaQ9tw7rH/eCqAX5wlfER+eo68Bn5bjb4kHxJPiXfko/J14zHke+r
IQeUC8oJ5YZyRLminFHu/l+5XDYO9nQkx7+HXFPOZ0HudwEHOF7ixC+BG6Tf
O8AV4sybwB3iEOlHnEoAt7h+VwPXiHP3AffuAQ7G1i/EyVbgpuqhEjkbuEqc
jflzAe29CKd3ALe1vxGg3zH4j8OMX/X9AXoj5PfqM/VKqGeod6iH/pW+ol7T
37PUDg31Xiv0YEyuQj1JvclxUa/q80jvqp1w2uZ5Enr6e9Db1OPU68Og57kO
GpfbZ3YB6ZgFu+EA7AjaFRNgZ5APTsEOIZ9w3Y7AbtF59ZhdMw92DvlQ2x/x
3fb6U+NMv10DO4l8tAN2lNptKWZn7YXdZXFQ93yI2W0Z7ofsQHG8FnZhZPep
HxvZheT712A3joYdSbuSdibtTsrpWtilT8NOpd2q+/uUs8jOXT3A7qVfSj9U
4aTB/FD6pRfge/RLaV/TL43jRr38BjhDP5V+qfJxnc2Xfqr6B4yPRX4q50M/
lX7rBVgf+q0D/dRPDLjnes7C/XVn+iOh3zoRuMz1PM+16zG/lfxFv1XzWnaa
37pPG/hxe4XxtirTI+RfHcdO80vJ/13wS+N+aIX5oZQf2ocaHx5Fv9v8VMov
5ZN+pn6X8c5I/ulX6ncifZ0Nv1LbRf4k475sh/U3v5L6Ox6HLsT++WnzI1fB
r9TxDYM+6zG/MuY/hH7lL+Fnfgnz+ukAP3P1gPtfD7gPcE8/lPEK6v+Y/gj9
UL2mmR9Kv5R+KP1SHW/FALuR60g5GRP3H8/wU/U7lSaX8WuLlCGuxDiT4nCB
xaGmIS7FOBW/o+2x77UU+3KVTeDHXIuD9SMupvNo1LzZ5Wdpf9WNNi+lG+Js
BVnIK2iQbyAOR7xQvBys46+rlw7E8RjXy0Ccj/igcp2idGmq+4e4oeLDKYsz
liLuSHxoQ1zyCOKUamcdtTgm45rEA8Y9XbMlE+Nx0dDu0fc7VZ7vmiCfQRyV
+PCGa78Z+2zjZZ57b63PuOwcxG3jeLDJ4rwD97GU7lHcmHFk4sVjiDMz7qx5
eYcsLg19Zvig8dd+j3HtLMS5GfdmHDyWR7w+YXFzyi3j6oyzKx8Nszg85Zhx
etfd0/mIk2VC3nMtzv+v9gO4b6D8lWv7Cleeuc9g8bN8s+dd+4ujfQruW3Af
g/saMbqXMR9hu+FRAv/UzCsCn2z338a+CvlkBPZdzsE+jM57OOy1o/5S7OOQ
j91rNxZzPrYPpPHOzECtqVLYBUODy7CPRLnTfOwy7APm2j4U96W4T0W9PQL7
WMSRJwfsc+mV9/STOb+coB77aPy+9l/EeCPxiXrE9umUn1NsH4/zV/4uAF+e
QH1FPvWa7ROSvto+D/zzB4Rxc2QP9Cj3Ibme2t9Z6H+/7WNWQG9y35P7oNp/
1gA+z7R9VMzLrtyHjeu7dNu3Vbqkkv62z0s6absU2xfmd78DPRffny1GvDjy
W0E381tnge+pt7iPHZf/Q7bvzX1w7otzn5z4wv3egftU3HfXeeywffq4XzxO
vuXmsdH2+bnvzzyAC5EnQPzkujKvAOsKPJ0oLchDIF5/37XrtLyFOJ9MQh7F
Qdhrk83vpn7Q93stb4J5vMyr2Ic8C+ojjYf1W16G6p+TlrfxOvI4qO/gD8Hv
bxigvxqwH51ieSQan0k1fat8kQZcaLQ8WO2nCd8bYvpdx59heS863izLi2Ge
DPNmuF/OvBrKNfNuPOThMC9H20V5O7D3LK/nNOoVdL5RHpDKQavZH/peK+Ke
tHMG5BV1TDXcYh4S85KYp8S4A/OY4jg2TZj3xN+ZF6XiUhA0IW8K+VPBfyOv
KkaHlhzLw6Kc952Zp1WQbXlcsbyucJ2Z98U8MOWbTKxjt1+KvDHyLfPKPoQ8
M9W/Q2S+a/+C5anF4nbL0y2v7RHkue1F3hvz4GLxhDPy5V5BHt1K5NXdijy7
WLxtPuz09dnWz5eAq8zbU5gslIeR10d8Y94f8wD1/X7LE2TeIPGM/ovydRn4
K8o7ZB4i8xI3IU8xvi/XY3mNryHPkXmP22J6oBLzfNfyJknXPuRV6jw6LQ8z
D3mZxLdfI2+TeZyaF7DR8jyLkPdJfMu9QvNCmSe6XQ0nXceXa6QceaXEt5dc
f69bHirzUpmnuhx5q8QzxVnYo1842/iKea/q93RZXuyoM/NkQ3zrRh4t82qZ
z8i8217k4RLfJiJPtxZ5u4p3fagrbJC5yPMlnun1uOUFv4M8YeYNv4g84jie
AV9TmuUN5CEzL7kQecrEM91vSChe1bYMsDNaLA+aedEfQZ408Wsl8qiZV62w
l25518zDJl4xT5t528zjZl4387yJV2rHZWr8YkObLESeOPPGmUfOvHLmmTPv
nLj0EPLSjyFPnXnrzGNnXjvz3Jn3Ph158MyLVzzKtbz5R5BHz7x65tkz7555
+I5+N0R5+jouT36DvH7m+Z+LvH/WATwP3GWdAOsGWEegdnBUd3A36hBYl9CP
OgXWLbh2+6K6BtY5KF5FdRCsi2CdBOsmlC+iuooy1Fmw7oJ1GKpWozoN1m2w
jkPpENV5uMvkqA6EdSGPo05E/ZJ25Z8ThVZXQj3FupN4XWCR1QVST8I+sDpB
1gXG9TjwPpGFvLYUqxN8AHWBcTlJQZyWcjUI+8/dVifIukHWCRJnWCfIukHa
r6wbZJ1g3D4/aXWD+tmoXpB1ghwH6wRZN0h7V9tnyGHUCVJ/UZ/o93Ox3qwT
zDf7eC7qCOF3mP6K1w0Ot30hvS+2ukHqL9YN6vMyqxtkHSHrBqmv4nWDFfF9
g9Ae1353Wx0h6wapvz6FPFjWEep7kT2+BHWD1Ffc/2MdoeYPbrI6wpmoG6S+
Ql231RF+F/a79j/R6gapr1a554/6rCMU2PesI/yhvm/6ivY+6wjVXt1odYSs
G6R+0vjrVqsjZN0g6whZN0j99B34B9pfw4B9uKiO0N1KVEdIfcU6QtYVXgN/
QtcjqiOkvkpATvQa1RGyrnAl6gipr1hHyLpC+h+sK2QdIfWTjv8I+o/qCnX8
rbIH/grrDGN1hYkBdYUdPLfghNUZlqGukPqKdYWsM9wI/4Z1hgdRV0h9Rdxg
nSFxRX+GvlkU1RmyrpD6iXWFrDMEHuH9mRZH0PFHdYbUV9wX1fYe5BH3FZ64
8xX2M74IfTYrzeoSNW8WdYh/8WQK6hKpz7Rf1CXWRXWKrFt052HclW76jP6a
jlfAj4P1PojqGKmvdH3xPBHVMer4ozpG6hv6f6xr1Pejukb1x6K6xrn/tO48
qlNn3fqjqGNnXTv1ia7HIauDfxZ18ayTJz5y3XHuB+rwT4Dve6wOn3X5lEul
WzfwdKuPcz+8z6DO/2HU/cdxMjofoAfnBvAcAeIr9Yde99s5BBU4l4DnFJTg
3ALqD+WPLu3nYLbhM+L3dk6CwlahnaMA+to5Czx3QfuNzmVQenWa/uA5DjzX
gXFInvvAcyCoPy4DXXhuhOrTrXauRPmZ50yE+oLnUPBcCh1nFH/mORbUF4U4
54LnXmg9wGt2LkY59IPlneEcDZ6roXRaa+du8BwO6gue08FzOx5x43vc47ke
CfyjvuC5IDwnhOeG8ByRYpwrQn3Bc0d4DgnPJeE5JTjnw/QFzzVxr10WnXvC
c1DugX6ifuC5KW54q1gHtNnOWRmBc1eoH8jXPKeF57bwHBee6xLzZxZtt3Ng
bsG5MDwnBvxj+kHltNPOmTkP587wHBqcM2D6QPXHbjvHhnKo46S+iM7Bwbke
ph9wroedowP5snN2eO4O9UMvzuXhOT2QWzvHB+d62Dk/Ac794TlAOt7onKD6
M88NCvGfuMJzhnQ+PXYOEfDJzikCftk5RsA3O+eoF/qZ+FyMc5F4TpLGQfrs
HKVLkE9AvCXO8kp/Ke43ZduVuBnHzz1efL8ze0DeVInE7c9Ku1IueY3lAYRX
8j2vcT5tEvIVr/G4W5twnXglXXkl3Xil3uI1Rqfw+ncG6+yN
"], {{}, {},
TagBox[
TooltipBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89}]},
RowBox[{"y", "\[Equal]",
RowBox[{"1", "-",
FractionBox["x", "15"]}]}]],
Annotation[#, $CellContext`y == 1 + Rational[-1, 15] $CellContext`x,
"Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6],
LineBox[{90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179}]},
RowBox[{"y", "\[Equal]",
RowBox[{"2", "-",
FractionBox["x", "7"]}]}]],
Annotation[#, $CellContext`y == 2 + Rational[-1, 7] $CellContext`x,
"Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6],
LineBox[CompressedData["
1:eJwN0NVBQgEAAMCH3YUgtq7kCP6ry9nd3YWJio3dHfdxC1xjc1tTaygIghba
6aCTLrrpoZc++hlgkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgkzhb
bLPDLnvsk+CAQ45IcswJp5xxzgWXpLjimhtuueOeBx554pkXXnnjnQ8++eKb
H375IxAXIo10Msgki2xyyCWPfAoopIhiSiiljDDlRIhSQYxKqqimhlrqqKeB
fwYyROQ=
"]]},
RowBox[{"y", "\[Equal]",
RowBox[{"3", "-",
FractionBox[
RowBox[{"3", " ", "x"}], "13"]}]}]],
Annotation[#, $CellContext`y == 3 + Rational[-3, 13] $CellContext`x,
"Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6],
LineBox[CompressedData["
1:eJwV0NlSgQEAgNG/R1FoIypFRJtWZCttJNJCSuX9ZxwXZ+a7/kL9SeNnIQiC
JiGxyBJhIkRZZoVV1lgnRpwNEiTZZIttUuywS5oMe2TJsU+eAgcccsQxJxQ5
5YxzLrjkihJlKlxTpUadBk1uuKXFHfc88MgTbTo80+WFHn1eGfDGOx98MmTE
F2O+mc+b8Msf/0yZAcHfGlg=
"]]},
RowBox[{"y", "\[Equal]",
RowBox[{"4", "-",
FractionBox["x", "3"]}]}]],
Annotation[#, $CellContext`y == 4 + Rational[-1, 3] $CellContext`x,
"Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6],
LineBox[{372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383,
384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397,
398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411,
412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425,
426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439,
440, 441}]},
RowBox[{"y", "\[Equal]",
RowBox[{"5", "-",
FractionBox[
RowBox[{"5", " ", "x"}], "11"]}]}]],
Annotation[#, $CellContext`y == 5 + Rational[-5, 11] $CellContext`x,
"Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[1.6],
LineBox[{442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453,
454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467,
468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481,
482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495,
496, 497, 498}]},
RowBox[{"y", "\[Equal]",
RowBox[{"6", "-",
FractionBox[
RowBox[{"3", " ", "x"}], "5"]}]}]],
Annotation[#, $CellContext`y == 6 + Rational[-3, 5] $CellContext`x,
"Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[1.6],
LineBox[{499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510,
511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524,
525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538,
539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552,
553, 554, 555, 556, 557, 558}]},
RowBox[{"y", "\[Equal]",
RowBox[{"7", "-",
FractionBox[
RowBox[{"7", " ", "x"}], "9"]}]}]],
Annotation[#, $CellContext`y == 7 + Rational[-7, 9] $CellContext`x,
"Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[1, 0.75, 0], AbsoluteThickness[1.6],
LineBox[{559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570,
571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584,
585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598,
599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612,
613, 614, 615}]},
RowBox[{"y", "\[Equal]",
RowBox[{"8", "-", "x"}]}]],
Annotation[#, $CellContext`y == 8 - $CellContext`x, "Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[1.6],
LineBox[{616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627,
628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641,
642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655,
656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669,
670, 671, 672, 673, 674}]},
RowBox[{"y", "\[Equal]",
RowBox[{"9", "-",
FractionBox[
RowBox[{"9", " ", "x"}], "7"]}]}]],
Annotation[#, $CellContext`y == 9 + Rational[-9, 7] $CellContext`x,
"Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[1.6],
LineBox[{675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686,
687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700,
701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714,
715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728,
729, 730, 731, 732}]},
RowBox[{"y", "\[Equal]",
RowBox[{"10", "-",
FractionBox[
RowBox[{"5", " ", "x"}], "3"]}]}]],
Annotation[#, $CellContext`y == 10 + Rational[-5, 3] $CellContext`x,
"Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[1.6],
LineBox[{733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744,
745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758,
759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772,
773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786,
787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800,
801}]},
RowBox[{"y", "\[Equal]",
RowBox[{"11", "-",
FractionBox[
RowBox[{"11", " ", "x"}], "5"]}]}]],
Annotation[#, $CellContext`y == 11 + Rational[-11, 5] $CellContext`x,
"Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwNw+kyAmAAAMDP9CQouSpFUipHqHSK5AiJlFDv/8/uzK6Ol73FSgih7Vok
hHWjxtww7qZbbrvjrgmTptwzbcZ9D8x6aM4j8xY8tmjJsieeeua5FS+89Mqq
Nete27Bpy7Ydu97Y89Y7+9478MFHn3x26Iuvvjny3bEffjrxy6kzv537469/
Llz6D06RGQM=
"]]},
RowBox[{"y", "\[Equal]",
RowBox[{"12", "-",
RowBox[{"3", " ", "x"}]}]}]],
Annotation[#, $CellContext`y == 12 - 3 $CellContext`x, "Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwNw2NSBGAAANCv6SRdqSP0u8m12W227c22bVuX6b2Zl5CUmpgSF0JINi0+
hHQzzDTLbHOMmGue+RZYaJHFllhqmeVWWGmVUautsdY6622w0SabbbHVNtvt
sNMuu+2x1z77HXDQIYcdcdQxx51w0phTTjvjrHPOu+CiSy674qprrrvhpltu
u+Oue+574KFHHnviqWeee+GlV15746133vvgo08+++Krb7774adffvvjr3/+
A8yUSTY=
"]]},
RowBox[{"y", "\[Equal]",
RowBox[{"13", "-",
FractionBox[
RowBox[{"13", " ", "x"}], "3"]}]}]],
Annotation[#, $CellContext`y == 13 + Rational[-13, 3] $CellContext`x,
"Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[0.736782672705901, 0.358, 0.5030266573755369],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwNw1VSAlAAAMCHYCtiNwp2d2OcwSM4469e2MTuwEaF3ZlN7exv70VCCLse
REM49MhjTzw165nnXnjpldfeeOud9z746JPPvvhqzjff/fDTL7/9Me+vf/5b
MMRCiFhi1JilllluhZVWWW2NtcatM2G9DTbaZLMtttpmux122mW3SXvsNWXa
PvsdcNAhhx1x1DHHnXDSKaedcdY5511w0SWXXXHVNTOuu+GmWxYBmQ8tDw==
"]]},
RowBox[{"y", "\[Equal]",
RowBox[{"14", "-",
RowBox[{"7", " ", "x"}]}]}]],
Annotation[#, $CellContext`y == 14 - 7 $CellContext`x, "Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwNw4kyAlAAAMBnxo/4lJKbJFHuitDtFiKVO3Lk+F27MzuSrydrQyGEtJHh
EKKOGnPMcSecdMppZ5x1zrjzJlww6aIpl1w2bcYVV11z3Q033TJrzrzb7lhw
1z33LVqybMWqNeseeOiRx5546pnnNrzw0iubXntjy1vbdux6570PPvrksy/2
fPXNvu9++OmXA7/98dc//wGsTCgb
"]]},
RowBox[{"y", "\[Equal]",
RowBox[{"15", "-",
RowBox[{"15", " ", "x"}]}]}]],
Annotation[#, $CellContext`y == 15 - 15 $CellContext`x, "Tooltip"]& ],
TagBox[
TooltipBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
LineBox[{1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185,
1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194}]},
RowBox[{"y", "\[Equal]", "x"}]],
Annotation[#, $CellContext`y == $CellContext`x, "Tooltip"]& ]}],
AspectRatio->1,
Axes->True,
AxesLabel->{
FormBox["x", TraditionalForm],
FormBox["y", TraditionalForm]},
DisplayFunction->Identity,
Frame->True,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.6676000989569674`*^9, 3.667602597704832*^9, 3.667605086518797*^9,
3.6676364080433764`*^9, 3.6676365868485727`*^9, {3.66763668570982*^9,
3.6676367018414545`*^9}, 3.6676369854567432`*^9, 3.6676812336945477`*^9, {
3.66768499847132*^9, 3.6676850068789415`*^9}, 3.6676850454300613`*^9,
3.6677261648815136`*^9},ExpressionUUID->"af8e809b-b8c9-475d-b3a6-\
12cb2e8a50eb"]
}, Open ]],
Cell[TextData[{
"Our next step was to find the equation of the curve produced by the graph \
of all our lines ranging from n=1 to n=15. We looked to optimize the variable \
of greatest change, ",
StyleBox["n, ",
FontSlant->"Italic"],
"so we took the partial derivative of our original function f[x,n] with \
respect to ",
StyleBox["n.",
FontSlant->"Italic"]
}], "Text",
CellChangeTimes->{{3.667600533374511*^9, 3.6676006320252075`*^9}, {
3.6676006733598995`*^9, 3.6676006931802635`*^9}, {3.667600808797517*^9,
3.6676009146566257`*^9}, 3.6676010464187946`*^9, {3.6676014266113777`*^9,
3.667601568068103*^9}, {3.6676016027043605`*^9, 3.6676016877431293`*^9}, {
3.6676017605847464`*^9, 3.667601790477765*^9}, {3.667603047851627*^9,
3.667603097327709*^9}, {3.6676032374849296`*^9, 3.667603263967595*^9},
3.6676035821767035`*^9, 3.6676037309606867`*^9, 3.6676038051354694`*^9, {
3.667603997567919*^9, 3.66760401354677*^9}, {3.6676040489583263`*^9,
3.667604135507058*^9}, {3.667604174255453*^9, 3.6676042149915485`*^9}, {
3.6676042827284594`*^9, 3.667604536420408*^9}, {3.667604965350789*^9,
3.667605026502448*^9}, 3.6676355770662594`*^9, {3.667636330408384*^9,
3.667636374559269*^9}, {3.6676801673493147`*^9, 3.667680180656916*^9}, {
3.667680222001577*^9, 3.6676802420031548`*^9}, {3.66768027638013*^9,
3.6676803077421436`*^9}, {3.667680439589436*^9, 3.6676804439930415`*^9},
3.6676806489582443`*^9, {3.6676807218326826`*^9, 3.6676807243340397`*^9},
3.6676807582589846`*^9},ExpressionUUID->"aeeaca03-b54d-4972-a46f-\
f2c7e4a196bf"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"D", "[",
RowBox[{
RowBox[{"f", "[",
RowBox[{"x", ",", "n"}], "]"}], ",", "n"}], "]"}]], "Input",
CellChangeTimes->{{3.6676004061033907`*^9,
3.6676004164212275`*^9}},ExpressionUUID->"184cdf41-52c3-4231-9806-\
cd74161b55ad"],
Cell[BoxData[
RowBox[{"1", "-",
FractionBox["x",
RowBox[{"16", "-", "n"}]], "-",
FractionBox[
RowBox[{"n", " ", "x"}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"16", "-", "n"}], ")"}], "2"]]}]], "Output",
CellChangeTimes->{3.667600417152933*^9,
3.667636408090254*^9},ExpressionUUID->"a69014f9-3dfd-44ab-8146-\
d95108658a75"]
}, Open ]],
Cell[TextData[{
"We then set the partial derivative, still with two variables, equal to zero \
and solved for ",
StyleBox["n ",
FontSlant->"Italic"],
"so that we could acquire the equations for the values of ",
StyleBox["n",
FontSlant->"Italic"],
" when the change in ",
StyleBox["n ",
FontSlant->"Italic"],
"is equal to zero."
}], "Text",
CellChangeTimes->{
3.6676804330092783`*^9, {3.6676852079810085`*^9,
3.6676852109429603`*^9}},ExpressionUUID->"744896cb-34b7-469f-b87b-\
3070ebfdb6e9"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"1", "-",
FractionBox["x",
RowBox[{"16", "-", "n"}]], "-",
FractionBox[
RowBox[{"n", " ", "x"}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"16", "-", "n"}], ")"}], "2"]]}], "\[Equal]", "0"}], ",",
"n"}], "]"}]], "Input",
CellChangeTimes->{{3.667600421598626*^9,
3.667600440800669*^9}},ExpressionUUID->"bc5e3258-46de-4e89-a7f4-\
c43d2cab5eea"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"n", "\[Rule]",
RowBox[{
RowBox[{"-", "4"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "4"}], "+",
SqrtBox["x"]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", "\[Rule]",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{"4", "+",
SqrtBox["x"]}], ")"}]}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{{3.667600433325742*^9, 3.66760044131769*^9},
3.6676364082908387`*^9},ExpressionUUID->"7ab44f3a-69bc-4c54-9235-\
8ed67f8f6f7f"]
}, Open ]],
Cell[TextData[{
StyleBox["Next, we took these new equations in terms of x: ",
FontColor->GrayLevel[0]],
Cell[BoxData[
FormBox[
RowBox[{"n", "=",
RowBox[{
RowBox[{"-", "4"}],
RowBox[{"(",
RowBox[{
RowBox[{"-", "4"}], "+",
SqrtBox["x"]}], ")"}]}]}], TraditionalForm]],
FontColor->GrayLevel[0],ExpressionUUID->
"c0edef1b-2369-45d5-ad8d-a2a40148621f"],
StyleBox[" and ",
FontColor->GrayLevel[0]],
Cell[BoxData[
FormBox[
RowBox[{"n", "=",
RowBox[{"4",
RowBox[{"(",
RowBox[{"4", "+",
SqrtBox["x"]}], ")"}]}]}], TraditionalForm]],
FontColor->GrayLevel[0],ExpressionUUID->
"f44a5d07-b181-4f6c-b231-b4509b04e70e"],
StyleBox[" and input them into our original equation,",
FontColor->GrayLevel[0]],
Cell[BoxData[
RowBox[{" ",
RowBox[{
RowBox[{"f", "[",
RowBox[{"x_", ",", "n_"}], "]"}], ":=",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"-", "n"}],
RowBox[{"16", "-", "n"}]], "*", "x"}], "+", "n"}]}]}]],
FontColor->GrayLevel[0],ExpressionUUID->
"56595cc4-01fe-4dcf-9b49-b5a5148d7128"],
StyleBox[", in the place of n. The output of the new equations ",
FontColor->GrayLevel[0]],
Cell[BoxData[
FormBox[
RowBox[{"f", "[",
RowBox[{"x", ",",
RowBox[{"16", "+",
RowBox[{"4",
SqrtBox["x"]}]}]}], "]"}], TraditionalForm]],
FontColor->GrayLevel[0],ExpressionUUID->
"2006e503-a2dc-48e1-acc6-b5f90c465407"],
StyleBox[" and ",
FontColor->GrayLevel[0]],
Cell[BoxData[
FormBox[
RowBox[{"f", "[",
RowBox[{"x", ",",
RowBox[{"16", "-",
RowBox[{"4",
SqrtBox["x"]}]}]}], "]"}], TraditionalForm]],
FontColor->GrayLevel[0],ExpressionUUID->
"5a525b6c-4815-488a-b175-b9995a302d41"],
StyleBox[" yielded the following equations, representative of the desired \
curve, y=",
FontColor->GrayLevel[0]],
Cell[BoxData[
SuperscriptBox[
RowBox[{"(",
RowBox[{"4", "+",
SqrtBox["x"]}], ")"}], "2"]],
CellChangeTimes->{3.667602185676773*^9},
FontFamily->"Arial",
FontColor->GrayLevel[0],ExpressionUUID->
"24d428c4-a3ef-4527-823e-ecbd9823d5aa"],
StyleBox[" and y=",
FontColor->GrayLevel[0]],
Cell[BoxData[
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "4"}], "+",
SqrtBox["x"]}], ")"}], "2"]],
CellChangeTimes->{3.667602212212263*^9},
FontFamily->"Arial",
FontColor->GrayLevel[0],ExpressionUUID->
"0c01d14c-f44c-447c-a6cb-3b70648be508"],
StyleBox[", respectively.",
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{
3.6676806454222155`*^9, {3.6676807607287817`*^9, 3.6676807626335564`*^9}, {
3.667680829137026*^9, 3.6676808511931934`*^9}, {3.6676852547367096`*^9,
3.6676852737134852`*^9}},ExpressionUUID->"0a1bb63b-68bc-49e8-a380-\
d17ad86ab1b0"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Simplify", "[",
RowBox[{"f", "[",
RowBox[{"x", ",",
RowBox[{"(",
RowBox[{"16", "+",
RowBox[{"4",
SqrtBox["x"]}]}], ")"}]}], "]"}], "]"}]], "Input",
CellChangeTimes->{{3.667300328488758*^9, 3.6673003692844133`*^9}, {
3.66730048979311*^9, 3.6673005355099277`*^9}, {3.667602174426674*^9,
3.6676021764601755`*^9}, {3.667686871082507*^9,
3.667686876121636*^9}},ExpressionUUID->"67793c0d-e989-4b97-9900-\
b4122c59e23d"],
Cell[BoxData[
SuperscriptBox[
RowBox[{"(",
RowBox[{"4", "+",
SqrtBox["x"]}], ")"}], "2"]], "Output",
CellChangeTimes->{3.667636408328624*^9,
3.6676868790850983`*^9},ExpressionUUID->"20d8580e-455d-4c33-a64e-\
c8998d9e3f38"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Simplify", "[",
RowBox[{"f", "[",
RowBox[{"x", ",",
RowBox[{"(",
RowBox[{"16", "-",
RowBox[{"4",
SqrtBox["x"]}]}], ")"}]}], "]"}], "]"}]], "Input",
CellChangeTimes->{{3.66730055299874*^9, 3.6673005623861933`*^9}, {
3.667602198637869*^9, 3.667602200740884*^9}, {3.667686884095776*^9,
3.667686888355136*^9}},ExpressionUUID->"670c1361-1bfd-45cb-98ba-\
24b605d38bad"],
Cell[BoxData[
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "4"}], "+",
SqrtBox["x"]}], ")"}], "2"]], "Output",
CellChangeTimes->{3.667636408375492*^9,
3.667686889090666*^9},ExpressionUUID->"9f3712e1-7424-499a-bd99-\
16d0245a74a0"]
}, Open ]],
Cell[TextData[{
"We then graphed these lines together to get an idea of their shape while \
extending the range of the ContourPlot to better discern. As a side note, the \
curve that is produced is a parabola that instead of facing upward or \
downward, is facing upward toward the first quadrant with symmetry at the \
line y=x as shown in ",
StyleBox["red on",
FontColor->GrayLevel[0]],
" the following contour plot."
}], "Text",
CellChangeTimes->{{3.667680710223995*^9, 3.6676807121098113`*^9}, {
3.6676808810977015`*^9, 3.667681000016374*^9}, {3.667681285087508*^9,
3.6676813016992693`*^9}, {3.6676813411613035`*^9, 3.667681354911566*^9}, {
3.6676814055577083`*^9, 3.6676814589141984`*^9}, {3.6676814947090707`*^9,
3.667681503947917*^9}, {3.6676815427258453`*^9, 3.667681544761363*^9}, {
3.6676853346705093`*^9, 3.6676853554665227`*^9}, 3.667685687610855*^9, {
3.6676870035014133`*^9, 3.6676870056496716`*^9},
3.667726203402384*^9},ExpressionUUID->"f42019c7-bc5c-41ae-8e34-\
a56fd3308860"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{
RowBox[{"R", "=",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"y", "==",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "4"}], "+",
SqrtBox["x"]}], ")"}], "2"]}], ",",
RowBox[{"y", "==",
SuperscriptBox[
RowBox[{"(",
RowBox[{"4", "+",
SqrtBox["x"]}], ")"}], "2"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "35"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "35"}], "}"}], ",",
RowBox[{"ContourStyle", "\[Rule]", "Black"}]}], "]"}]}], ",",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{"y", "\[Equal]", "x"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "35"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "35"}], "}"}], ",",
RowBox[{"ContourStyle", "\[Rule]", "Red"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6675694989316783`*^9, 3.6675695385089483`*^9}, {
3.6675697128392544`*^9, 3.66756974456971*^9}, {3.6675699099768004`*^9,
3.667570013061782*^9}, {3.667570072950287*^9, 3.667570104821143*^9}, {
3.66760010396871*^9, 3.6676001046050496`*^9}, {3.667600240754346*^9,
3.667600259376038*^9}, 3.6676003021582813`*^9, {3.667602037620749*^9,
3.667602116302613*^9}, {3.6676025587845554`*^9, 3.667602573140826*^9}, {
3.6676365576369705`*^9, 3.667636565081036*^9}, {3.66768110862403*^9,
3.6676811532019625`*^9}, {3.6676812089326773`*^9,
3.6676812090483427`*^9}, {3.6676812450131845`*^9,
3.6676812573693705`*^9}, {3.6676854064701204`*^9,
3.6676854350994987`*^9}, {3.6676855375676336`*^9,
3.667685648226266*^9}},ExpressionUUID->"8f31d47a-2259-4518-96a2-\
b61341a54217"],
Cell[BoxData[
GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJxVVwk4lN0XH/sgQioUxjKM3dj3e0haSGklLdZKVLY2+URUtiJRX9tYIvSV
lDVSTCRJlrLEJOuY0FizfvH38Tae//s885x533vuvb/zu+f8znNlXE7tdGfH
4XBjC7//7P8/mvAv09VDu/Eumnyee+f4Ng04to/w2+LrfbQ4DBoQ8OEYo0cg
Ad2rjhI4r6sBH6TOZAS6JSPp/8xzdfBPO1jS4PN4yT9JHazc8i6+snmI7m8N
3pATrQ57HFuN7G0y0aIRV4d7MavnQoxzlvxx6mDrqhd1ReQJelDlf/5ntxoM
WyfSxe9mo7/NarR1QtQg0CbwgYTZyyV/JzVQee5oTfJ6gSibPZ4pGquB3vH6
ZzzXc9GXlMMr1/9QBUfebpMceLPkX6oKzzTX2wnU5qPEyoO9znGqEBDOcf5X
SCES5hnt57BTBalueWZaMnXJn6AK2tm0vaPkYpRktXPd/R8qUPpI16L79Ctk
6xn2bqBQBa6bt5iOplQs+QerQKHGgwPN8W9QcoWVXROoQGhXzmWGTimKrF2T
8pmgAvOJUdfMUt8v+XcoA6VZndw+W4ZSLI2vCv2tDGkjNse/q1NRpXbmX8Xh
ynByzuxbZFo1xr8yTMiVMW+5lKNYzmLHyBElUBA88jsgpBxVHuUTnfmpBB0H