-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
490 lines (413 loc) · 19.9 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import random as rd
rd.seed(101)
import collections
from types import new_class
import numpy as np
import scipy.sparse as sp
from scipy.sparse import csr_matrix
from parse import parse_args
import time
import torch
from copy import deepcopy
from tqdm import tqdm
import matplotlib.pyplot as plt
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from reckit import randint_choice
# Helper function used when loading data from files
def helper_load(filename):
user_dict_list = {}
item_dict = set()
with open(filename) as f:
for line in f.readlines():
line = line.strip('\n').split(' ')
if len(line) == 0:
continue
line = [int(i) for i in line]
user = line[0]
items = line[1:]
item_dict.update(items)
if len(items) == 0:
continue
user_dict_list[user] = items
return user_dict_list, item_dict,
def helper_load_train(filename):
user_dict_list = {}
item_dict = set()
item_dict_list = {}
trainUser, trainItem = [], []
with open(filename) as f:
for line in f.readlines():
line = line.strip('\n').split(' ')
# print(line)
if len(line) == 0:
continue
line = [int(i) for i in line]
user = line[0]
items = line[1:]
item_dict.update(items)
# LGN
trainUser.extend([user] * len(items))
trainItem.extend(items)
if len(items) == 0:
continue
user_dict_list[user] = items
for item in items:
if item in item_dict_list.keys():
item_dict_list[item].append(user)
else:
item_dict_list[item] = [user]
return user_dict_list, item_dict, item_dict_list, trainUser, trainItem
# It loads the data and creates a train_loader
class Data:
def __init__(self, args):
self.path = args.data_path + args.dataset + '/'
self.small_path=args.data_path + args.dataset+".mid"+"/"
self.train_file = self.path + 'train.txt'
self.valid_file = self.path + 'valid.txt'
if(args.dataset == "tencent_synthetic" or args.dataset == "kuairec_ood"):
self.test_ood_file_1 = self.path + 'test_ood_1.txt'
self.test_ood_file_2 = self.path + 'test_ood_2.txt'
self.test_ood_file_3 = self.path + 'test_ood_3.txt'
else:
self.test_ood_file = self.path + 'test_ood.txt'
self.test_id_file = self.path + 'test_id.txt'
self.batch_size = args.batch_size
self.neg_sample = args.neg_sample
self.sam=args.sam
self.IPStype = args.IPStype
self.device = torch.device(args.cuda)
self.modeltype = args.modeltype
self.small_num=5000
self.user_pop_max = 0
self.item_pop_max = 0
self.infonce = args.infonce
self.num_workers = args.num_workers
self.dataset = args.dataset
# Number of total users and items
self.n_users, self.n_items, self.n_observations = 0, 0, 0
self.users = []
self.items = []
self.population_list = []
self.weights = []
# List of dictionaries of users and its observed items in corresponding dataset
# {user1: [item1, item2, item3...], user2: [item1, item3, item4],...}
# {item1: [user1, user2], item2: [user1, user3], ...}
self.train_user_list = collections.defaultdict(list)
self.valid_user_list = collections.defaultdict(list)
if(self.dataset == "tencent_synthetic" or self.dataset == "kuairec_ood"):
self.test_ood_user_list_1 = collections.defaultdict(list)
self.test_ood_user_list_2 = collections.defaultdict(list)
self.test_ood_user_list_3 = collections.defaultdict(list)
else:
self.test_ood_user_list = collections.defaultdict(list)
self.test_id_user_list = collections.defaultdict(list)
# Used to track early stopping point
self.best_valid_recall = -np.inf
self.best_valid_epoch, self.patience = 0, 0
self.train_item_list = collections.defaultdict(list)
self.Graph = None
self.trainUser, self.trainItem, self.UserItemNet = [], [], []
self.n_interactions = 0
if(self.dataset == "tencent_synthetic" or self.dataset == "kuairec_ood"):
self.test_ood_item_list_1 = []
self.test_ood_item_list_2 = []
self.test_ood_item_list_3 = []
else:
self.test_ood_item_list = []
self.test_id_item_list = []
#Dataloader
self.train_data = None
self.train_loader = None
# self.trainUser, self.trainItem 分别是训练集中的用户和物品,交互列表
def load_data(self):
self.train_user_list, train_item, self.train_item_list, self.trainUser, self.trainItem = helper_load_train(
self.train_file)
self.valid_user_list, valid_item = helper_load(self.valid_file)
if(self.dataset == "tencent_synthetic" or self.dataset == "kuairec_ood"):
self.test_ood_user_list_1, self.test_ood_item_list_1 = helper_load(self.test_ood_file_1)
self.test_ood_user_list_2, self.test_ood_item_list_2 = helper_load(self.test_ood_file_2)
self.test_ood_user_list_3, self.test_ood_item_list_3 = helper_load(self.test_ood_file_3)
else:
self.test_ood_user_list, self.test_ood_item_list = helper_load(self.test_ood_file)
self.test_id_user_list, self.test_id_item_list = helper_load(self.test_id_file)
self.pop_dict_list = []
if(self.dataset == "tencent_synthetic" or self.dataset == "kuairec_ood"):
temp_lst = [train_item, valid_item, self.test_ood_item_list_1, self.test_ood_item_list_2, self.test_ood_item_list_3]
else:
temp_lst = [train_item, valid_item, self.test_ood_item_list, self.test_id_item_list]
self.users = list(set(self.train_user_list.keys()))
if(self.dataset == "kuairec_ood" or self.dataset == "kuairec1" or self.dataset == "kuairec2" or self.dataset == "kuairec0.8" or self.dataset == "kuairec_wc"):
self.items = list(range(max(set().union(*temp_lst))+1))
else:
self.items = list(set().union(*temp_lst))
self.items.sort()
# print(self.items)
self.n_users = len(self.users)
if(self.dataset == "Coat" or self.dataset == "yelp_ood"):
self.n_items = max(self.items)+1
else:
self.n_items = len(self.items)
# self.n_items = len(self.items)
print("n_users: ", self.n_users)
print("n_items: ", self.n_items)
# print(self.train_item_list)
for i in range(self.n_users):
self.n_observations += len(self.train_user_list[i])
self.n_interactions += len(self.train_user_list[i])
if i in self.valid_user_list.keys():
self.n_interactions += len(self.valid_user_list[i])
if(self.dataset == "tencent_synthetic" or self.dataset == "kuairec_ood"):
if i in self.test_ood_user_list_1.keys():
self.n_interactions += len(self.test_ood_user_list_1[i])
if i in self.test_ood_user_list_2.keys():
self.n_interactions += len(self.test_ood_user_list_2[i])
if i in self.test_ood_user_list_3.keys():
self.n_interactions += len(self.test_ood_user_list_3[i])
else:
if i in self.test_id_user_list.keys():
self.n_interactions += len(self.test_id_user_list[i])
if i in self.test_ood_user_list.keys():
self.n_interactions += len(self.test_ood_user_list[i])
# Population matrix
pop_dict = {}
for item, users in self.train_item_list.items():
pop_dict[item] = len(users) + 1
for item in range(0, self.n_items):
if item not in pop_dict.keys():
pop_dict[item] = 1
self.population_list.append(pop_dict[item])
pop_user = {key: len(value) for key, value in self.train_user_list.items()}
pop_item = {key: len(value) for key, value in self.train_item_list.items()}
self.pop_item = pop_item
self.pop_user = pop_user
# 转换成一个unique的value
sorted_pop_user = list(set(list(pop_user.values())))
sorted_pop_item = list(set(list(pop_item.values())))
sorted_pop_user.sort()
sorted_pop_item.sort()
self.n_user_pop = len(sorted_pop_user)
self.n_item_pop = len(sorted_pop_item)
# print("n_user_pop", self.n_user_pop)
# print("n_item_pop", self.n_item_pop)
# print(pop_item.items())
user_idx = {}
item_idx = {}
for i, item in enumerate(sorted_pop_user):
user_idx[item] = i
for i, item in enumerate(sorted_pop_item):
item_idx[item] = i
# print(self.n_users, self.n_items, self.n_user_pop, self.n_item_pop)
self.user_pop_idx = np.zeros(self.n_users, dtype=int)
self.item_pop_idx = np.zeros(self.n_items, dtype=int)
# 把原来稀疏的popularity转化为dense的popularity
for key, value in pop_user.items():
self.user_pop_idx[key] = user_idx[value]
for key, value in pop_item.items():
# print(key, value)
self.item_pop_idx[key] = item_idx[value]
#self.item_pop_idx = torch.tensor(self.item_pop_idx).cuda(self.device)
user_pop_max = max(self.user_pop_idx)
item_pop_max = max(self.item_pop_idx)
self.user_pop_max = user_pop_max
self.item_pop_max = item_pop_max
self.weights = self.get_weight()
self.weight_dict={i:self.weights[i] for i in range(len(self.weights))}
self.sorted_weight=sorted(self.weight_dict.items(),key=lambda x: x[1])
self.sample_pos_small={}
self.sample_pos_big={}
lo=0
hi=1
while hi<len(self.weights):
if self.sorted_weight[hi][1]>self.sorted_weight[lo][1]:
for i in range(lo,hi):
self.sample_pos_small[self.sorted_weight[i][0]]=hi
lo=hi
hi+=1
for i in range(lo,hi):
self.sample_pos_small[self.sorted_weight[i][0]]=hi
lo=len(self.weights)-2
hi=len(self.weights)-1
while lo>=0:
if self.sorted_weight[lo][1]<self.sorted_weight[hi][1]:
for i in range(hi,lo,-1):
self.sample_pos_big[self.sorted_weight[i][0]]=lo
hi=lo
lo-=1
for i in range(hi,lo,-1):
self.sample_pos_big[self.sorted_weight[i][0]]=lo
self.sample_items = np.array(self.items, dtype=int)
# BISER
if(self.modeltype == "BISER"):
self.train_ui_matrix = csr_matrix((np.ones(len(self.trainUser)), (self.trainUser, self.trainItem)),
shape=(self.n_users, self.n_items)).toarray()
self.train_iu_matrix = np.copy( self.train_ui_matrix.T )
if self.modeltype == 'CausE':
self.train_data = TrainDataset_cause(self.modeltype, self.users, self.train_user_list, self.n_observations, \
self.n_interactions, self.pop_item, self.n_items, self.infonce, self.neg_sample, self.items, self.sample_items)
else:
self.train_data = TrainDataset(self.modeltype, self.users, self.train_user_list, self.user_pop_idx, self.item_pop_idx, \
self.neg_sample, self.n_observations, self.n_items, self.sample_items, self.weights, self.infonce, self.items)
self.train_loader = DataLoader(self.train_data, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers, drop_last=True)
def get_weight(self):
if 's' in self.IPStype:
pop = self.population_list
pop = np.clip(pop, 1, max(pop))
pop = pop / max(pop)
return pop
pop = self.population_list
pop = np.clip(pop, 1, max(pop))
pop = pop / np.linalg.norm(pop, ord=np.inf)
pop = 1 / pop
if 'c' in self.IPStype:
pop = np.clip(pop, 1, np.median(pop))
if 'n' in self.IPStype:
pop = pop / np.linalg.norm(pop, ord=np.inf)
return pop
def _convert_sp_mat_to_sp_tensor(self, X):
coo = X.tocoo().astype(np.float32)
row = torch.Tensor(coo.row).long()
col = torch.Tensor(coo.col).long()
index = torch.stack([row, col])
data = torch.FloatTensor(coo.data)
return torch.sparse.FloatTensor(index, data, torch.Size(coo.shape))
def getSparseGraph(self):
if self.Graph is None:
try:
pre_adj_mat = sp.load_npz(self.path + '/s_pre_adj_mat.npz')
if(self.modeltype == "SGL"):
try:
self.ui_mat = sp.load_npz(self.path + '/ui_mat.npz')
except:
self.trainItem = np.array(self.trainItem)
self.trainUser = np.array(self.trainUser)
self.ui_mat = csr_matrix((np.ones(len(self.trainUser)), (self.trainUser, self.trainItem)),
shape=(self.n_users, self.n_items))
sp.save_npz(self.path + '/ui_mat.npz', self.ui_mat)
print("successfully saved ui_mat...")
# dist_mat=np.load_npy(self.path+'/dist_mat.npy')
# dist_mat=dist_mat[:self.n_users, self.n_users:]
# self.dist_mat=np.exp(-(dist_mat-1)/2)+1
print("successfully loaded...")
norm_adj = pre_adj_mat
#@ 如果没有预处理的邻接矩阵,就生成一个
except:
print("generating adjacency matrix")
s = time.time()
adj_mat = sp.dok_matrix((self.n_users + self.n_items, self.n_users + self.n_items), dtype=np.float32)
adj_mat = adj_mat.tolil()
self.trainItem = np.array(self.trainItem)
self.trainUser = np.array(self.trainUser)
self.UserItemNet = csr_matrix((np.ones(len(self.trainUser)), (self.trainUser, self.trainItem)),
shape=(self.n_users, self.n_items))
R = self.UserItemNet.tolil()
adj_mat[:self.n_users, self.n_users:] = R
adj_mat[self.n_users:, :self.n_users] = R.T
adj_mat = adj_mat.tocsr()
sp.save_npz(self.path + '/adj_mat.npz', adj_mat)
print("successfully saved adj_mat...")
adj_mat = adj_mat.todok()
rowsum = np.array(adj_mat.sum(axis=1))
d_inv = np.power(rowsum, -0.5).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat = sp.diags(d_inv)
norm_adj = d_mat.dot(adj_mat)
norm_adj = norm_adj.dot(d_mat)
norm_adj = norm_adj.tocsr()
end = time.time()
print(f"costing {end - s}s, saved norm_mat...")
sp.save_npz(self.path + '/s_pre_adj_mat.npz', norm_adj)
self.Graph = self._convert_sp_mat_to_sp_tensor(norm_adj)
self.Graph = self.Graph.coalesce().cuda(self.device)
return self.Graph
class TrainDataset(torch.utils.data.Dataset):
def __init__(self, modeltype, users, train_user_list, user_pop_idx, item_pop_idx, neg_sample, \
n_observations, n_items, sample_items, weights, infonce, items):
self.modeltype = modeltype
self.users = users
self.train_user_list = train_user_list
self.user_pop_idx = user_pop_idx
self.item_pop_idx = item_pop_idx
self.neg_sample = neg_sample
self.n_observations = n_observations
self.n_items = n_items
self.sample_items = sample_items
self.weights = weights
self.infonce = infonce
self.items = items
def __getitem__(self, index):
index = index % len(self.users)
user = self.users[index]
if self.train_user_list[user] == []:
pos_items = 0
else:
# pos_item是随机选的,train_user_list是用户的历史记录
pos_item = rd.choice(self.train_user_list[user])
user_pop = self.user_pop_idx[user]
pos_item_pop = self.item_pop_idx[pos_item]
pos_weight = self.weights[pos_item]
if self.infonce == 1 and self.neg_sample == -1:
return user, pos_item, user_pop, pos_item_pop, pos_weight
elif self.infonce == 1 and self.neg_sample != -1:
# neg_item的采样方式是随机采样,不是按照popularity采样
#@ 选取的为非历史记录的item,即负样本,用exclusion来排除
#? 主动引入了曝光偏差
# print("1", self.n_items, "2", user, "3", len(self.train_user_list[user]), "4", max(self.train_user_list[user]), "5", len(self.train_user_list[user])>self.n_items)
# if(len(self.train_user_list[user])<self.n_items):
# neg_items = randint_choice(self.n_items, size=self.neg_sample, exclusion=self.train_user_list[user])
# neg_items_pop = self.item_pop_idx[neg_items]
# else:
# print("????????")
neg_items = randint_choice(self.n_items, size=self.neg_sample, exclusion=self.train_user_list[user])
neg_items_pop = self.item_pop_idx[neg_items]
return user, pos_item, user_pop, pos_item_pop, pos_weight, torch.tensor(neg_items).long(), neg_items_pop
else:
while True:
# if(self.n_items <= neg_item):
# print("????")
idx = rd.randint(0, self.n_items -1)
# print(idx, idx > len(self.items), len(self.items))
neg_item = self.items[idx]
if neg_item not in self.train_user_list[user]:
break
neg_item_pop = self.item_pop_idx[neg_item]
return user, pos_item, user_pop, pos_item_pop, pos_weight, neg_item, neg_item_pop
def __len__(self):
return self.n_observations
class TrainDataset_cause(torch.utils.data.Dataset):
def __init__(self, modeltype, users, train_user_list, n_observations, n_interactions, pop_item, n_items, infonce, neg_sample, items, sample_items):
self.modeltype = modeltype
self.users = users
self.train_user_list = train_user_list
self.n_observations = n_observations
self.n_interactions = n_interactions
self.pop_item = pop_item
self.n_items = n_items
self.infonce = infonce
self.neg_sample = neg_sample
self.items = items
self.sample_items = sample_items
def __getitem__(self, index):
index = index % len(self.users)
user = self.users[index]
pos_item = rd.choice(self.train_user_list[user])
if self.infonce == 1 and self.neg_sample != -1:
neg_items = self.get_neg_sample(user)
neg_item = neg_items[0]
else:
while True:
neg_item = self.items[rd.randint(0, self.n_items -1)]
if neg_item not in self.train_user_list[user]:
break
weight = 0.1 * self.n_interactions/len(self.pop_item)/self.pop_item[pos_item]
if weight >= 1:
weight = 0
rad = rd.random()
if rad < weight:
pos_item += self.n_items
neg_item += self.n_items
all_item = [pos_item, neg_item]
ctrl_item = [i+self.n_items if i<self.n_items else i-self.n_items for i in all_item]
return user, pos_item, neg_item, torch.tensor(all_item), torch.tensor(ctrl_item)
def __len__(self):
return self.n_observations