forked from cseagle/blc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dynamic.cc
533 lines (465 loc) · 15.8 KB
/
dynamic.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/* ###
* IP: GHIDRA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dynamic.hh"
#include "funcdata.hh"
#include "crc32.hh"
// Table for how to hash opcodes, lumps certain operators (i.e. ADD SUB PTRADD PTRSUB) into one hash
// zero indicates the operator should be skipped
uint4 DynamicHash::transtable[] = {
0,
CPUI_COPY, CPUI_LOAD, CPUI_STORE, CPUI_BRANCH, CPUI_CBRANCH, CPUI_BRANCHIND,
CPUI_CALL, CPUI_CALLIND, CPUI_CALLOTHER, CPUI_RETURN,
CPUI_INT_EQUAL, CPUI_INT_EQUAL, // NOT_EQUAL hashes same as EQUAL
CPUI_INT_SLESS, CPUI_INT_SLESS, // SLESSEQUAL hashes same as SLESS
CPUI_INT_LESS, CPUI_INT_LESS, // LESSEQUAL hashes same as LESS
CPUI_INT_ZEXT, CPUI_INT_SEXT,
CPUI_INT_ADD, CPUI_INT_ADD, // SUB hases same as ADD
CPUI_INT_CARRY, CPUI_INT_SCARRY, CPUI_INT_SBORROW,
CPUI_INT_2COMP, CPUI_INT_NEGATE,
CPUI_INT_XOR, CPUI_INT_AND, CPUI_INT_OR, CPUI_INT_MULT, // LEFT hases same as MULT
CPUI_INT_RIGHT, CPUI_INT_SRIGHT,
CPUI_INT_MULT, CPUI_INT_DIV, CPUI_INT_SDIV, CPUI_INT_REM, CPUI_INT_SREM,
CPUI_BOOL_NEGATE, CPUI_BOOL_XOR, CPUI_BOOL_AND, CPUI_BOOL_OR,
CPUI_FLOAT_EQUAL, CPUI_FLOAT_EQUAL, // NOTEQUAL hases same as EQUAL
CPUI_FLOAT_LESS, CPUI_FLOAT_LESS, // LESSEQUAL hashes same as EQUAL
0, // Unused slot - skip
CPUI_FLOAT_NAN,
CPUI_FLOAT_ADD, CPUI_FLOAT_DIV, CPUI_FLOAT_MULT, CPUI_FLOAT_ADD, // SUB hashes same as ADD
CPUI_FLOAT_NEG, CPUI_FLOAT_ABS, CPUI_FLOAT_SQRT,
CPUI_FLOAT_INT2FLOAT, CPUI_FLOAT_FLOAT2FLOAT, CPUI_FLOAT_TRUNC, CPUI_FLOAT_CEIL, CPUI_FLOAT_FLOOR,
CPUI_FLOAT_ROUND,
CPUI_MULTIEQUAL, CPUI_INDIRECT, CPUI_PIECE, CPUI_SUBPIECE,
0, // CAST is skipped
CPUI_INT_ADD, CPUI_INT_ADD, // PTRADD and PTRSUB hash same as INT_ADD
CPUI_SEGMENTOP, CPUI_CPOOLREF, CPUI_NEW, CPUI_INSERT, CPUI_EXTRACT, CPUI_POPCOUNT
};
/// These edges are sorted to provide consistency to the hash
/// The sort is based on the PcodeOp sequence number first, then the Varnode slot
/// \param op2 is the edge to compare \b this to
/// \return \b true if \b this should be ordered before the other edge
bool ToOpEdge::operator<(const ToOpEdge &op2) const
{
const Address &addr1( op->getSeqNum().getAddr() );
const Address &addr2( op2.op->getSeqNum().getAddr() );
if (addr1 != addr2)
return (addr1 < addr2);
uintm ord1 = op->getSeqNum().getOrder();
uintm ord2 = op2.op->getSeqNum().getOrder();
if (ord1 != ord2)
return (ord1 < ord2);
return (slot < op2.slot);
}
/// The hash accumulates:
/// - the Varnode slot
/// - the address of the PcodeOp
/// - the op-code of the PcodeOp
///
/// The op-codes are translated so that the hash is invariant under
/// common variants.
/// \param reg is the incoming hash accumulator value
/// \return the accumulator value with \b this edge folded in
uint4 ToOpEdge::hash(uint4 reg) const
{
reg = crc_update(reg,(uint4)slot);
reg = crc_update(reg,DynamicHash::transtable[op->code()]);
uintb val = op->getSeqNum().getAddr().getOffset();
int4 sz = op->getSeqNum().getAddr().getAddrSize();
for(int4 i=0;i<sz;++i) {
reg = crc_update(reg,(uint4)val); // Hash in the address
val >>= 8;
}
return reg;
}
/// When building the edge, certain p-code ops (CAST) are effectively ignored so that
/// we get the same hash whether or not these ops are present.
/// \param vn is the given Varnode
void DynamicHash::buildVnUp(const Varnode *vn)
{
const PcodeOp *op;
for(;;) {
if (!vn->isWritten()) return;
op = vn->getDef();
if (transtable[op->code()] != 0) break; // Do not ignore this operation
vn = op->getIn(0);
}
opedge.push_back(ToOpEdge(op,-1));
}
/// When building edges, certain p-code ops (CAST) are effectively ignored so that
/// we get the same hash whether or not these ops are present.
/// \param vn is the given Varnode
void DynamicHash::buildVnDown(const Varnode *vn)
{
list<PcodeOp *>::const_iterator iter;
uint4 insize = opedge.size();
for(iter=vn->beginDescend();iter!=vn->endDescend();++iter) {
const PcodeOp *op = *iter;
const Varnode *tmpvn = vn;
while(transtable[op->code()]==0) {
tmpvn = op->getOut();
if (tmpvn == (const Varnode *)0) {
op = (const PcodeOp *)0;
break;
}
op = tmpvn->loneDescend();
if (op == (const PcodeOp *)0) break;
}
if (op == (const PcodeOp *)0) continue;
int4 slot = op->getSlot(tmpvn);
opedge.push_back(ToOpEdge(op,slot));
}
if ((uint4)opedge.size()-insize > 1)
sort(opedge.begin()+insize,opedge.end());
}
/// \param op is the given PcodeOp thats already in the sub-graph
void DynamicHash::buildOpUp(const PcodeOp *op)
{
for(int4 i=0;i<op->numInput();++i) {
const Varnode *vn = op->getIn(i);
vnedge.push_back(vn);
}
}
/// \param op is the given PcodeOp thats already in the sub-graph
void DynamicHash::buildOpDown(const PcodeOp *op)
{
const Varnode *vn = op->getOut();
if (vn == (const Varnode *)0) return;
vnedge.push_back(vn);
}
void DynamicHash::gatherUnmarkedVn(void)
{
for(int4 i=0;i<vnedge.size();++i) {
const Varnode *vn = vnedge[i];
if (vn->isMark()) continue;
markvn.push_back(vn);
vn->setMark();
}
vnedge.clear();
}
void DynamicHash::gatherUnmarkedOp(void)
{
for(;opedgeproc<opedge.size();++opedgeproc) {
const PcodeOp *op = opedge[opedgeproc].getOp();
if (op->isMark()) continue;
markop.push_back(op);
op->setMark();
}
}
void DynamicHash::clear(void)
{
markop.clear();
markvn.clear();
vnedge.clear();
opedge.clear();
}
/// A sub-graph is formed extending from the given Varnode as the root. The
/// method specifies how the sub-graph is extended. In particular:
/// - Method 0 is extends to just immediate p-code ops reading or writing root
/// - Method 1 extends to one more level of inputs from method 0.
/// - Method 2 extends to one more level of outputs from method 0.
/// - Method 3 extends to inputs and outputs
///
/// The resulting hash and address can be obtained after calling this method
/// through getHash() and getAddress().
/// \param root is the given root Varnode
/// \param method is the hashing method to use: 0, 1, 2, 3
void DynamicHash::calcHash(const Varnode *root,uint4 method)
{
vnproc = 0;
opproc = 0;
opedgeproc = 0;
vnedge.push_back(root);
gatherUnmarkedVn();
for(uint4 i=vnproc;i<markvn.size();++i)
buildVnUp(markvn[i]);
for(;vnproc<markvn.size();++vnproc)
buildVnDown(markvn[vnproc]);
switch(method) {
case 0:
break;
case 1:
gatherUnmarkedOp();
for(;opproc<markop.size();++opproc)
buildOpUp(markop[opproc]);
gatherUnmarkedVn();
for(;vnproc<markvn.size();++vnproc)
buildVnUp(markvn[vnproc]);
break;
case 2:
gatherUnmarkedOp();
for(;opproc<markop.size();++opproc)
buildOpDown(markop[opproc]);
gatherUnmarkedVn();
for(;vnproc<markvn.size();++vnproc)
buildVnDown(markvn[vnproc]);
break;
case 3:
gatherUnmarkedOp();
for(;opproc<markop.size();++opproc)
buildOpUp(markop[opproc]);
gatherUnmarkedVn();
for(;vnproc<markvn.size();++vnproc)
buildVnDown(markvn[vnproc]);
break;
default:
break;
}
for(uint4 i=0;i<markvn.size();++i) // Clear our marks
markvn[i]->clearMark();
for(uint4 i=0;i<markop.size();++i)
markop[i]->clearMark();
if (opedge.size() == 0) {
hash = (uint8)0;
addrresult = Address();
return;
}
uint4 reg = 0x3ba0fe06; // Calculate the 32-bit hash
// Hash in information about the root
reg = crc_update(reg,(uint4)root->getSize());
if (root->isConstant()) {
uintb val = root->getOffset();
for(int4 i=0;i<root->getSize();++i) {
reg = crc_update(reg,(uint4)val);
val >>= 8;
}
}
for(uint4 i=0;i<opedge.size();++i)
reg = opedge[i].hash(reg);
// Build the final 64-bit hash
const PcodeOp *op = (const PcodeOp *)0;
int4 slot = 0;
uint4 ct;
bool attachedop = true;
for(ct=0;ct<opedge.size();++ct) { // Find op that is directly attached to -root- i.e. not a skip op
op = opedge[ct].getOp();
slot = opedge[ct].getSlot();
if ((slot < 0) && (op->getOut() == root)) break;
if ((slot >=0) && (op->getIn(slot)==root)) break;
}
if (ct == opedge.size()) { // If everything attached to the root was a skip op
op = opedge[0].getOp(); // Return op that is not attached directly
slot = opedge[0].getSlot();
attachedop = false;
}
// 15 bits unused
hash = attachedop ? 0 : 1;
hash <<= 4;
hash |= method; // 4-bits
hash <<= 7;
hash |= (uint8)op->code(); // 7-bits
hash <<= 5;
hash |= (uint8)(slot & 0x1f); // 5-bits
hash <<= 32;
hash |= (uint8)reg; // 32-bits for the neighborhood hash
addrresult = op->getSeqNum().getAddr();
}
/// Collect the set of Varnodes at the same address as the given Varnode.
/// Starting with method 0, increment the method and calculate hashes
/// of the Varnodes until the given Varnode has a unique hash within the set.
/// The resulting hash and address can be obtained after calling this method
/// through getHash() and getAddress().
///
/// In the rare situation that the last method still does not yield a unique hash,
/// the hash encodes:
/// - the smallest number of hash collisions
/// - the method that produced the smallest number of hash collisions
/// - the position of the root within the collision list
///
/// For most cases, this will still uniquely identify the root Varnode.
/// \param root is the given root Varnode
/// \param fd is the function (holding the data-flow graph)
void DynamicHash::uniqueHash(const Varnode *root,Funcdata *fd)
{
vector<Varnode *> vnlist;
vector<Varnode *> vnlist2;
vector<Varnode *> champion;
uint4 method;
uint8 tmphash;
Address tmpaddr;
uint4 maxduplicates = 8;
for(method=0;method<4;++method) {
clear();
calcHash(root,method);
if (hash == 0) return; // Can't get a good hash
tmphash = hash;
tmpaddr = addrresult;
vnlist.clear();
vnlist2.clear();
gatherFirstLevelVars(vnlist,fd,tmpaddr,tmphash);
for(uint4 i=0;i<vnlist.size();++i) {
Varnode *tmpvn = vnlist[i];
clear();
calcHash(tmpvn,method);
if (hash == tmphash) { // Hash collision
vnlist2.push_back(tmpvn);
if (vnlist2.size()>maxduplicates) break;
}
}
if (vnlist2.size() <= maxduplicates) {
if ((champion.size()==0)||(vnlist2.size() < champion.size())) {
champion = vnlist2;
if (champion.size()==1) break; // Current hash is unique
}
}
}
if (champion.empty()) {
hash = (uint8)0;
addrresult = Address(); // Couldn't find a unique hash
return;
}
uint4 total = (uint4)champion.size() - 1; // total is in range [0,maxduplicates-1]
uint4 pos;
for(pos=0;pos<=total;++pos)
if (champion[pos] == root) break;
if (pos > total) {
hash = (uint8)0;
addrresult = Address();
return;
}
hash = tmphash | ((uint8)pos << 49); // Store three bits for position with list of duplicate hashes
hash |= ((uint8)total << 52); // Store three bits for total number of duplicate hashes
addrresult = tmpaddr;
}
/// \brief Given an address and hash, find the unique matching Varnode
///
/// The method, number of collisions, and position are pulled out of the hash.
/// Hashes for the method are performed at Varnodes linked to the given address,
/// and the Varnode which matches the hash (and the position) is returned.
/// If the number of collisions for the hash does not match, this method
/// will not return a Varnode, even if the position looks valid.
/// \param fd is the function containing the data-flow
/// \param addr is the given address
/// \param h is the hash
/// \return the matching Varnode or NULL
Varnode *DynamicHash::findVarnode(const Funcdata *fd,const Address &addr,uint8 h)
{
uint4 method = getMethodFromHash(h);
uint4 total = getTotalFromHash(h);
uint4 pos = getPositionFromHash(h);
clearTotalPosition(h);
vector<Varnode *> vnlist;
vector<Varnode *> vnlist2;
gatherFirstLevelVars(vnlist,fd,addr,h);
for(uint4 i=0;i<vnlist.size();++i) {
Varnode *tmpvn = vnlist[i];
clear();
calcHash(tmpvn,method);
if (hash == h)
vnlist2.push_back(tmpvn);
}
if (total != vnlist2.size()) return (Varnode *)0;
return vnlist2[pos];
}
/// \brief Get the Varnodes immediately attached to PcodeOps at the given address
///
/// Varnodes can be either inputs or outputs to the PcodeOps. The op-code, slot, and
/// attachment boolean encoded in the hash are used to further filter the
/// PcodeOp and Varnode objects. Varnodes are passed back in sequence with a list container.
/// \param varlist is the container that will hold the matching Varnodes
/// \param fd is the function holding the data-flow
/// \param addr is the given address
/// \param h is the given hash
void DynamicHash::gatherFirstLevelVars(vector<Varnode *> &varlist,const Funcdata *fd,const Address &addr,uint8 h)
{
OpCode opc = getOpCodeFromHash(h);
int4 slot = getSlotFromHash(h);
bool isnotattached = getIsNotAttached(h);
PcodeOpTree::const_iterator iter = fd->beginOp(addr);
PcodeOpTree::const_iterator enditer = fd->endOp(addr);
while(iter!=enditer) {
PcodeOp *op = (*iter).second;
++iter;
if (op->code() != opc) continue;
if (slot <0) {
Varnode *vn = op->getOut();
if (vn != (Varnode *)0) {
if (isnotattached) { // If original varnode was not attached to (this) op
op = vn->loneDescend();
if (op != (PcodeOp *)0) {
if (transtable[op->code()] == 0) { // Check for skipped op
vn = op->getOut();
if (vn == (Varnode *)0) continue;
}
}
}
varlist.push_back(vn);
}
}
else if (slot < op->numInput()) {
Varnode *vn = op->getIn(slot);
if (isnotattached) {
op = vn->getDef();
if ((op != (PcodeOp *)0)&&(transtable[op->code()]==0))
vn = op->getIn(0);
}
varlist.push_back(vn);
}
}
}
/// The hash encodes the input \e slot the root Varnode was attached to in its PcodeOp.
/// \param h is the hash value
/// \return the slot index or -1 if the Varnode was attached as output
int4 DynamicHash::getSlotFromHash(uint8 h)
{
int4 res = (int4)((h>>32)&0x1f);
if (res == 31)
res = -1;
return res;
}
/// The hash encodes the \e method used to produce it.
/// \param h is the hash value
/// \return the method: 0, 1, 2, 3
uint4 DynamicHash::getMethodFromHash(uint8 h)
{
return (uint4)((h>>44)&0xf);
}
/// The hash encodes the op-code of the p-code op attached to the root Varnode
/// \param h is the hash value
/// \return the op-code
OpCode DynamicHash::getOpCodeFromHash(uint8 h)
{
return (OpCode)((h>>37)&0x7f);
}
/// The hash encodes the position of the root Varnode within the list of hash collisions
/// \param h is the hash value
/// \return the position of the root
uint4 DynamicHash::getPositionFromHash(uint8 h)
{
return (uint4)((h>>49)&7);
}
/// The hash encodes the total number of collisions for that hash
/// \param h is the hash value
/// \return the total number of collisions
uint4 DynamicHash::getTotalFromHash(uint8 h)
{
return ((uint4)((h>>52)&7)+1);
}
/// The hash encodes whether or not the root was directly attached to its PcodeOp
/// \param h is the hash value
/// \return \b true if the root was not attached
bool DynamicHash::getIsNotAttached(uint8 h)
{
return (((h>>48)&1)!=0);
}
/// The position and total collisions fields are set by the uniqueness and
/// need to be cleared when comparing raw hashes.
/// \param h is a reference to the hash to modify
void DynamicHash::clearTotalPosition(uint8 &h)
{
uint8 val = 0x3f;
val <<= 49;
val = ~val;
h &= val;
}