-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbert.py
355 lines (288 loc) · 14.3 KB
/
bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
from transformers import BertTokenizer, BertConfig
from transformers import AdamW, BertForSequenceClassification, get_linear_schedule_with_warmup
from tqdm import tqdm, trange
import pandas as pd
import io
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd.gradcheck import zero_gradients
import argparse
import random
from utils import *
import os
class ECE(nn.Module):
def __init__(self, n_bins=15):
"""
n_bins (int): number of confidence interval bins
"""
super(ECE, self).__init__()
bin_boundaries = torch.linspace(0, 1, n_bins + 1)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
def forward(self, logits, labels):
softmaxes = F.softmax(logits, dim=1)
confidences, predictions = torch.max(softmaxes, 1)
accuracies = predictions.eq(labels)
ece = torch.zeros(1, device=logits.device)
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
# Calculated |confidence - accuracy| in each bin
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
return ece
# Function to calculate the accuracy of our predictions vs labels
def accurate_nb(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--lr", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--train_batch_size", default=32, type=int, help="Batch size for training.")
parser.add_argument("--eval_batch_size", default=128, type=int, help="Batch size for training.")
parser.add_argument("--epochs", default=10, type=int, help="Number of epochs for training.")
parser.add_argument("--seed", default=0, type=int, help="Number of epochs for training.")
parser.add_argument("--dataset", default='20news-15', type=str, help="dataset")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument('--saved_dataset', type=str, default='n', help='whether save the preprocessed pt file of the dataset')
args = parser.parse_args()
print(args)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args.device = device
set_seed(args)
ece_criterion = ECE().to(args.device)
# load dataset
if args.saved_dataset == 'n':
train_sentences, val_sentences, test_sentences, train_labels, val_labels, test_labels = load_dataset(args.dataset)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
train_input_ids = []
val_input_ids = []
test_input_ids = []
if args.dataset == '20news' or args.dataset == '20news-15':
MAX_LEN = 150
else:
MAX_LEN = 256
for sent in train_sentences:
# `encode` will:
# (1) Tokenize the sentence.
# (2) Prepend the `[CLS]` token to the start.
# (3) Append the `[SEP]` token to the end.
# (4) Map tokens to their IDs.
encoded_sent = tokenizer.encode(
sent, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
# This function also supports truncation and conversion
# to pytorch tensors, but we need to do padding, so we
# can't use these features :( .
max_length = MAX_LEN, # Truncate all sentences.
#return_tensors = 'pt', # Return pytorch tensors.
)
# Add the encoded sentence to the list.
train_input_ids.append(encoded_sent)
for sent in val_sentences:
encoded_sent = tokenizer.encode(
sent,
add_special_tokens = True,
max_length = MAX_LEN,
)
val_input_ids.append(encoded_sent)
for sent in test_sentences:
encoded_sent = tokenizer.encode(
sent,
add_special_tokens = True,
max_length = MAX_LEN,
)
test_input_ids.append(encoded_sent)
# Pad our input tokens
train_input_ids = pad_sequences(train_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
val_input_ids = pad_sequences(val_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
test_input_ids = pad_sequences(test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
# Create attention masks
train_attention_masks = []
val_attention_masks = []
test_attention_masks = []
# Create a mask of 1s for each token followed by 0s for padding
for seq in train_input_ids:
seq_mask = [float(i>0) for i in seq]
train_attention_masks.append(seq_mask)
for seq in val_input_ids:
seq_mask = [float(i>0) for i in seq]
val_attention_masks.append(seq_mask)
for seq in test_input_ids:
seq_mask = [float(i>0) for i in seq]
test_attention_masks.append(seq_mask)
# Convert all of our data into torch tensors, the required datatype for our model
train_inputs = torch.tensor(train_input_ids)
validation_inputs = torch.tensor(val_input_ids)
train_labels = torch.tensor(train_labels)
validation_labels = torch.tensor(val_labels)
train_masks = torch.tensor(train_attention_masks)
validation_masks = torch.tensor(val_attention_masks)
test_inputs = torch.tensor(test_input_ids)
test_labels = torch.tensor(test_labels)
test_masks = torch.tensor(test_attention_masks)
# Create an iterator of our data with torch DataLoader.
train_data = TensorDataset(train_inputs, train_masks, train_labels)
validation_data = TensorDataset(validation_inputs, validation_masks, validation_labels)
prediction_data = TensorDataset(test_inputs, test_masks, test_labels)
dataset_dir = 'dataset/{}'.format(args.dataset)
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)
torch.save(train_data, dataset_dir+'/train.pt')
torch.save(validation_data, dataset_dir+'/val.pt')
torch.save(prediction_data, dataset_dir+'/test.pt')
else:
dataset_dir = 'dataset/{}'.format(args.dataset)
train_data = torch.load(dataset_dir+'/train.pt')
validation_data = torch.load(dataset_dir+'/val.pt')
prediction_data = torch.load(dataset_dir+'/test.pt')
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
validation_sampler = SequentialSampler(validation_data)
validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=args.eval_batch_size)
prediction_sampler = SequentialSampler(prediction_data)
prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=args.eval_batch_size)
if args.dataset == '20news':
num_labels = 20
elif args.dataset == '20news-15':
num_labels = 15
elif args.dataset == 'wos-100':
num_labels = 100
elif args.dataset == 'wos':
num_labels = 134
print(num_labels)
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels= num_labels, output_hidden_states=True)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
model.to(args.device)
#######train model
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay_rate': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
'weight_decay_rate': 0.0}
]
optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=args.lr, eps=1e-9)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1)
t_total = len(train_dataloader) * args.epochs
# Store our loss and accuracy for plotting
best_val = -np.inf
# trange is a tqdm wrapper around the normal python range
for epoch in trange(args.epochs, desc="Epoch"):
# Training
# Set our model to training mode (as opposed to evaluation mode)
# Tracking variables
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
model.train()
# Train the data for one epoch
for step, batch in enumerate(train_dataloader):
# Add batch to GPU
batch = tuple(t.to(args.device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
loss_ce = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)[0]
if torch.cuda.device_count() > 1:
loss_ce = loss_ce.mean()
loss_ce.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# Update parameters and take a step using the computed gradient
optimizer.step()
# Update tracking variables
tr_loss += loss_ce.item()
nb_tr_examples += b_input_ids.size(0)
nb_tr_steps += 1
print("Train cross entropy loss: {}".format(tr_loss/nb_tr_steps))
# Validation
# Put model in evaluation mode to evaluate loss on the validation set
model.eval()
# Tracking variables
eval_accurate_nb = 0
nb_eval_examples = 0
logits_list = []
labels_list = []
# Evaluate data for one epoch
for batch in validation_dataloader:
# Add batch to GPU
batch = tuple(t.to(args.device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# Telling the model not to compute or store gradients, saving memory and speeding up validation
with torch.no_grad():
# Forward pass, calculate logit predictions
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]
logits_list.append(logits)
labels_list.append(b_labels)
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
tmp_eval_nb = accurate_nb(logits, label_ids)
eval_accurate_nb += tmp_eval_nb
nb_eval_examples += label_ids.shape[0]
eval_accuracy = eval_accurate_nb/nb_eval_examples
print("Validation Accuracy: {}".format(eval_accuracy))
scheduler.step(eval_accuracy)
logits_ece = torch.cat(logits_list)
labels_ece = torch.cat(labels_list)
ece = ece_criterion(logits_ece, labels_ece).item()
print('ECE on val data: {}'.format(ece))
if eval_accuracy > best_val:
dirname = '{}/BERT-base-{}'.format(args.dataset, args.seed)
output_dir = './model_save/{}'.format(dirname)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print("Saving model to %s" % output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir)
#tokenizer.save_pretrained(output_dir)
best_val = eval_accuracy
# ##### test model on test data
# Put model in evaluation mode
model.eval()
# Tracking variables
eval_accurate_nb = 0
nb_test_examples = 0
logits_list = []
labels_list = []
# Predict
for batch in prediction_dataloader:
# Add batch to GPU
batch = tuple(t.to(args.device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# Telling the model not to compute or store gradients, saving memory and speeding up prediction
with torch.no_grad():
# Forward pass, calculate logit predictions
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]
logits_list.append(logits)
labels_list.append(b_labels)
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
tmp_eval_nb = accurate_nb(logits, label_ids)
eval_accurate_nb += tmp_eval_nb
nb_test_examples += label_ids.shape[0]
print("Test Accuracy: {}".format(eval_accurate_nb/nb_test_examples))
logits_ece = torch.cat(logits_list)
labels_ece = torch.cat(labels_list)
ece = ece_criterion(logits_ece, labels_ece).item()
print('ECE on test data: {}'.format(ece))
if __name__ == "__main__":
main()