-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
369 lines (288 loc) · 11.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import torch
from torch import nn
from torch.nn import functional as F
import pandas as pd
from collections import Counter
import numpy as np
from sklearn.datasets import fetch_20newsgroups
from collections import Counter, defaultdict
from nltk.corpus import stopwords
from sklearn.model_selection import train_test_split
import re
from sklearn.utils import shuffle
def cos_dist(x, y):
## cosine distance function
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
batch_size = x.size(0)
c = torch.clamp(1 - cos(x.view(batch_size, -1), y.view(batch_size, -1)),
min=0)
return c.mean()
def tag_mapping(tags):
"""
Create a dictionary and a mapping of tags, sorted by frequency.
"""
#tags = [s[1] for s in dataset]
dico = Counter(tags)
tag_to_id, id_to_tag = create_mapping(dico)
print("Found %i unique named entity tags" % len(dico))
return dico, tag_to_id, id_to_tag
def create_mapping(dico):
"""
Create a mapping (item to ID / ID to item) from a dictionary.
Items are ordered by decreasing frequency.
"""
sorted_items = sorted(dico.items(), key=lambda x: (-x[1], x[0]))
id_to_item = {i: v[0] for i, v in enumerate(sorted_items)}
item_to_id = {v: k for k, v in id_to_item.items()}
return item_to_id, id_to_item
def clean_str(string):
"""
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def clean_doc(x, word_freq):
stop_words = set(stopwords.words('english'))
clean_docs = []
most_commons = dict(word_freq.most_common(min(len(word_freq), 50000)))
for doc_content in x:
doc_words = []
cleaned = clean_str(doc_content.strip())
for word in cleaned.split():
if word not in stop_words and word_freq[word] >= 5:
if word in most_commons:
doc_words.append(word)
else:
doc_words.append("<UNK>")
doc_str = ' '.join(doc_words).strip()
clean_docs.append(doc_str)
return clean_docs
def load_dataset(dataset):
if dataset == 'sst':
df_train = pd.read_csv("./dataset/sst/SST-2/train.tsv", delimiter='\t', header=0)
df_val = pd.read_csv("./dataset/sst/SST-2/dev.tsv", delimiter='\t', header=0)
df_test = pd.read_csv("./dataset/sst/SST-2/sst-test.tsv", delimiter='\t', header=None, names=['sentence', 'label'])
train_sentences = df_train.sentence.values
val_sentences = df_val.sentence.values
test_sentences = df_test.sentence.values
train_labels = df_train.label.values
val_labels = df_val.label.values
test_labels = df_test.label.values
if dataset == '20news':
VALIDATION_SPLIT = 0.8
newsgroups_train = fetch_20newsgroups('dataset/20news', subset='train', shuffle=True, random_state=0)
print(newsgroups_train.target_names)
print(len(newsgroups_train.data))
newsgroups_test = fetch_20newsgroups('dataset/20news', subset='test', shuffle=False)
print(len(newsgroups_test.data))
train_len = int(VALIDATION_SPLIT * len(newsgroups_train.data))
train_sentences = newsgroups_train.data[:train_len]
val_sentences = newsgroups_train.data[train_len:]
test_sentences = newsgroups_test.data
train_labels = newsgroups_train.target[:train_len]
val_labels = newsgroups_train.target[train_len:]
test_labels = newsgroups_test.target
if dataset == '20news-15':
VALIDATION_SPLIT = 0.8
cats = ['alt.atheism',
'comp.graphics',
'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',
'comp.windows.x',
'rec.autos',
'rec.motorcycles',
'rec.sport.baseball',
'rec.sport.hockey',
'misc.forsale',
'sci.crypt',
'sci.electronics',
'sci.med',
'sci.space']
newsgroups_train = fetch_20newsgroups('dataset/20news', subset='train', shuffle=True, categories=cats, random_state=0)
print(newsgroups_train.target_names)
print(len(newsgroups_train.data))
newsgroups_test = fetch_20newsgroups('dataset/20news', subset='test', shuffle=False, categories=cats)
print(len(newsgroups_test.data))
train_len = int(VALIDATION_SPLIT * len(newsgroups_train.data))
train_sentences = newsgroups_train.data[:train_len]
val_sentences = newsgroups_train.data[train_len:]
test_sentences = newsgroups_test.data
train_labels = newsgroups_train.target[:train_len]
val_labels = newsgroups_train.target[train_len:]
test_labels = newsgroups_test.target
if dataset == '20news-5':
cats = [
'soc.religion.christian',
'talk.politics.guns',
'talk.politics.mideast',
'talk.politics.misc',
'talk.religion.misc']
newsgroups_test = fetch_20newsgroups('dataset/20news', subset='test', shuffle=False, categories=cats)
print(newsgroups_test.target_names)
print(len(newsgroups_test.data))
train_sentences = None
val_sentences = None
test_sentences = newsgroups_test.data
train_labels = None
val_labels = None
test_labels = newsgroups_test.target
if dataset == 'wos':
TESTING_SPLIT = 0.6
VALIDATION_SPLIT = 0.8
file_path = './dataset/WebOfScience/WOS46985/X.txt'
with open(file_path, 'r') as read_file:
x_temp = read_file.readlines()
x_all = []
for x in x_temp:
x_all.append(str(x))
print(len(x_all))
file_path = './dataset/WebOfScience/WOS46985/Y.txt'
with open(file_path, 'r') as read_file:
y_temp= read_file.readlines()
y_all = []
for y in y_temp:
y_all.append(int(y))
print(len(y_all))
print(max(y_all), min(y_all))
x_in = []
y_in = []
for i in range(len(x_all)):
x_in.append(x_all[i])
y_in.append(y_all[i])
train_val_len = int(TESTING_SPLIT * len(x_in))
train_len = int(VALIDATION_SPLIT * train_val_len)
train_sentences = x_in[:train_len]
val_sentences = x_in[train_len:train_val_len]
test_sentences = x_in[train_val_len:]
train_labels = y_in[:train_len]
val_labels = y_in[train_len:train_val_len]
test_labels = y_in[train_val_len:]
print(len(train_labels))
print(len(val_labels))
print(len(test_labels))
if dataset == 'wos-100':
TESTING_SPLIT = 0.6
VALIDATION_SPLIT = 0.8
file_path = './dataset/WebOfScience/WOS46985/X.txt'
with open(file_path, 'r') as read_file:
x_temp = read_file.readlines()
x_all = []
for x in x_temp:
x_all.append(str(x))
print(len(x_all))
file_path = './dataset/WebOfScience/WOS46985/Y.txt'
with open(file_path, 'r') as read_file:
y_temp= read_file.readlines()
y_all = []
for y in y_temp:
y_all.append(int(y))
print(len(y_all))
print(max(y_all), min(y_all))
x_in = []
y_in = []
for i in range(len(x_all)):
if y_all[i] in range(100):
x_in.append(x_all[i])
y_in.append(y_all[i])
for i in range(133):
num = 0
for y in y_in:
if y == i:
num = num + 1
# print(num)
train_val_len = int(TESTING_SPLIT * len(x_in))
train_len = int(VALIDATION_SPLIT * train_val_len)
train_sentences = x_in[:train_len]
val_sentences = x_in[train_len:train_val_len]
test_sentences = x_in[train_val_len:]
train_labels = y_in[:train_len]
val_labels = y_in[train_len:train_val_len]
test_labels = y_in[train_val_len:]
print(len(train_labels))
print(len(val_labels))
print(len(test_labels))
if dataset == 'wos-34':
TESTING_SPLIT = 0.6
VALIDATION_SPLIT = 0.8
file_path = './dataset/WebOfScience/WOS46985/X.txt'
with open(file_path, 'r') as read_file:
x_temp = read_file.readlines()
x_all = []
for x in x_temp:
x_all.append(str(x))
print(len(x_all))
file_path = './dataset/WebOfScience/WOS46985/Y.txt'
with open(file_path, 'r') as read_file:
y_temp= read_file.readlines()
y_all = []
for y in y_temp:
y_all.append(int(y))
print(len(y_all))
print(max(y_all), min(y_all))
x_in = []
y_in = []
for i in range(len(x_all)):
if (y_all[i] in range(100)) != True:
x_in.append(x_all[i])
y_in.append(y_all[i])
for i in range(133):
num = 0
for y in y_in:
if y == i:
num = num + 1
# print(num)
train_val_len = int(TESTING_SPLIT * len(x_in))
train_len = int(VALIDATION_SPLIT * train_val_len)
train_sentences = None
val_sentences = None
test_sentences = x_in[train_val_len:]
train_labels = None
val_labels = None
test_labels = y_in[train_val_len:]
print(len(test_labels))
if dataset == 'agnews':
VALIDATION_SPLIT = 0.8
labels_in_domain = [1, 2]
train_df = pd.read_csv('./dataset/agnews/train.csv', header=None)
train_df.rename(columns={0: 'label',1: 'title', 2:'sentence'}, inplace=True)
# train_df = pd.concat([train_df, pd.get_dummies(train_df['label'],prefix='label')], axis=1)
print(train_df.dtypes)
train_in_df_sentence = []
train_in_df_label = []
for i in range(len(train_df.sentence.values)):
sentence_temp = ''.join(str(train_df.sentence.values[i]))
train_in_df_sentence.append(sentence_temp)
train_in_df_label.append(train_df.label.values[i]-1)
test_df = pd.read_csv('./dataset/agnews/test.csv', header=None)
test_df.rename(columns={0: 'label',1: 'title', 2:'sentence'}, inplace=True)
# test_df = pd.concat([test_df, pd.get_dummies(test_df['label'],prefix='label')], axis=1)
test_in_df_sentence = []
test_in_df_label = []
for i in range(len(test_df.sentence.values)):
test_in_df_sentence.append(str(test_df.sentence.values[i]))
test_in_df_label.append(test_df.label.values[i]-1)
train_len = int(VALIDATION_SPLIT * len(train_in_df_sentence))
train_sentences = train_in_df_sentence[:train_len]
val_sentences = train_in_df_sentence[train_len:]
test_sentences = test_in_df_sentence
train_labels = train_in_df_label[:train_len]
val_labels = train_in_df_label[train_len:]
test_labels = test_in_df_label
print(len(train_sentences))
print(len(val_sentences))
print(len(test_sentences))
return train_sentences, val_sentences, test_sentences, train_labels, val_labels, test_labels