Skip to content

An accurate and efficient deep learning method for single-cell RNA-seq data imputation

License

Notifications You must be signed in to change notification settings

Lizz647/deepimpute

 
 

Repository files navigation

DeepImpute: an accurate and efficient deep learning method for single-cell RNA-seq data imputation

Build Status

Arisdakessian, Cedric, Olivier Poirion, Breck Yunits, Xun Zhu, and Lana Garmire.
"DeepImpute: an accurate, fast and scalable deep neural network method to impute single-cell RNA-Seq data.", Genome biology 20.1 (2019): 211" https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1837-6?fbclid=IwAR2wkwBbp_rQBv0muKEYlt-MDZGlJF6sej1sbKJOP58jvXX1XdD98aGuauo

DeepImpute has been implemented in Python2 and Python3. The recommended version is Python3.

Getting Started

These instructions will get you a copy of the project up and running on your local machine.

Installing

You can install DeepImpute's latest release using pip with the following command:

pip install deepimpute

To install the latest GitHub version, you can also clone this directory and install it:

git clone https://github.com/lanagarmire/deepimpute
cd deepimpute
pip install --user .

Usage

DeepImpute can be used either on the command line or as a Python package.

Command line:

usage: deepImpute [-h] [-o OUTPUT] [--cores CORES]
                  [--cell-axis {rows,columns}] [--limit LIMIT]
                  [--minVMR MINVMR] [--subset SUBSET]
                  [--learning-rate LEARNING_RATE] [--batch-size BATCH_SIZE]
                  [--max-epochs MAX_EPOCHS] [--hidden-neurons HIDDEN_NEURONS]
                  [--dropout-rate DROPOUT_RATE]
                  [--output-neurons OUTPUT_NEURONS] [--n_pred N_PRED]
                  [--policy POLICY]
                  inputFile

scRNA-seq data imputation using DeepImpute.

positional arguments:
  inputFile             Path to input data.

optional arguments:
  -h, --help            show this help message and exit
  -o OUTPUT, --output OUTPUT
                        Path to output data counts. Default: ./imputed.csv
  --cores CORES         Number of cores. Default: all available cores
  --cell-axis {rows,columns}
                        Cell dimension in the matrix. Default: rows
  --limit LIMIT         Genes to impute (e.g. first 2000 genes). Default: auto
  --minVMR MINVMR       Min Variance over mean ratio for gene exclusion. Gene
                        with a VMR below ${minVMR} are discarded. Used if
                        --limit is set to 'auto'. Default: 0.5
  --subset SUBSET       Cell subset to speed up training. Either a ratio
                        (0<x<1) or a cell number (int). Default: 1 (all)
  --learning-rate LEARNING_RATE
                        Learning rate. Default: 0.0001
  --batch-size BATCH_SIZE
                        Batch size. Default: 64
  --max-epochs MAX_EPOCHS
                        Maximum number of epochs. Default: 500
  --hidden-neurons HIDDEN_NEURONS
                        Number of neurons in the hidden dense layer. Default:
                        256
  --dropout-rate DROPOUT_RATE
                        Dropout rate for the hidden dropout layer (0<rate<1).
                        Default: 0.2
  --output-neurons OUTPUT_NEURONS
                        Number of output neurons per sub-network. Default: 512
  --n_pred N_PRED       Number of predictors to consider. Consider using this
                        parameter if your RAM is limited or if you have a high
                        number of features. Default: All genes with nonzero
                        VMR
  --policy POLICY       Whether to restore positive values from the raw
                        dataset or keep the max between the imputed values and
                        the raw values. Choices are ['restore', 'max'].
                        Default: restore

Python package:

from deepimpute.multinet import MultiNet

data = pd.read_csv('examples/test.csv', index_col=0) # dimension = (cells x genes)
model = MultiNet()
model.fit(data)
imputed = model.predict(data)

A more detailed usage of deepImpute's functionality is available in the iPython Notebook notebook_example.ipynb

Running the tests

Each file has been validated using a unittest script. They are all available in the test folder. To run all the tests at once, you can also use the makefile by running make test.

About

An accurate and efficient deep learning method for single-cell RNA-seq data imputation

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 96.1%
  • Makefile 3.2%
  • Dockerfile 0.7%