Skip to content

Implementation of PointPillars Network with LiDAR-camera fusion for 3D Object Detection in Autonomous Driving.

Notifications You must be signed in to change notification settings

Loahit5101/PointPillars-Camera-LiDAR-Fusion

Repository files navigation

PointPillars with LiDAR-Camera Fusion for 3D Object Detection

  • Implementation of PointPillars Network with camera fusion for 3D object Detection in Autonomous Driving.
  • Object Detection outputs from PointPillars and a 2D object detector (Cascade R-CNN) are fused using a Fusion Network (CLOCs) to achieve improved performance compared to LiDAR only baseline.

Performance

Model 3D AP (Easy,Moderate,Hard)
PointPillars 77.98, 57.86, 66.02
PointPillars+CLOCs 81.43, 60.05, 67.15
Improvement 3.45, 2.19, 1.13

Setup

Clone this repository and install required libraries in a seperate virtual environment.

git clone https://github.com/Loahit5101/PointPillars-Camera-LiDAR-Fusion.git   
pip install -r requirements.txt

Dataset

  1. Download point cloud(29GB), images(12 GB), calibration files(16 MB) and labels(5 MB).

  2. Pre-process KITTI dataset

    python pre_process_kitti.py --data_root your_dataset_path
    

    Expected structure:

    kitti_dataset
        |- training
            |- calib (#7481 .txt)
            |- image_2 (#7481 .png)
            |- label_2 (#7481 .txt)
            |- velodyne (#7481 .bin)
            |- velodyne_reduced (#7481 .bin)
        |- testing
            |- calib (#7518 .txt)
            |- image_2 (#7518 .png)
            |- velodyne (#7518 .bin)
            |- velodyne_reduced (#7518 .bin)
        |- kitti_gt_database (# 19700 .bin)
        |- kitti_infos_train.pkl
        |- kitti_infos_val.pkl
        |- kitti_infos_trainval.pkl
        |- kitti_infos_test.pkl
        |- kitti_dbinfos_train.pkl
    
    

PointPillars

Training

python train_pillars.py --data_root your_dataset_path

Testing

python test.py --ckpt pretrained_model_path --pc_path your_pc_path

Evaluation

python evaluate.py --ckpt pretrained_model_path --data_root your_dataset_path

CLOC Fusion Network

Code to train CLOCs is inside CLOC_fusion folder

Dataset

CLOCs requires 3D detection results and 2D detection results (from Cascade R-CNN in this case) before nms step. ANy 3D or 2D detector can be used with CLOC provided the detections are in KITTI format.

Run the below command to generate 3D detections or download from below link

python evaluate.py --ckpt pretrained_model_path --data_root your_dataset_path

2D and 3D detections can also be downloaded from this link.

python generate_data.py

Generated inputs are stored in input_data folder

Expected structure:

.
└── clocs_data
    ├── 2D
    │   ├── 000000.txt
    │   ├── 000001.txt
    │   └── 000002.txt
    ├── 3D
    │   ├── 000000.pkl
    │   ├── 000001.pkl
    │   └── 000002.pkl
    ├── index
    │   ├── train.txt
    │   ├── trainval.txt
    │   └── val.txt
    ├── info
    │   ├── kitti_infos_trainval.pkl
    │   └── kitti_infos_val.pkl
    └── input_data
        ├── 000000.pt
        ├── 000001.pt
        └── 000002.pt

Training

python train.py 

Testing

python test.py 

Evaluation

python evaluate.py 

Pretrained models

Pretrained models are available in the pretrained models folder

References

  1. PointPillars
  2. CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

About

Implementation of PointPillars Network with LiDAR-camera fusion for 3D Object Detection in Autonomous Driving.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published