In this repo it is presented an implementation of a Deep Autoencoder architecture trained on the MNIST database in FPGA, focusing on machine vision tasks for the data reconstruction and classification in the latent dimension. To implement machine learning (ML) models in FPGAs, a companion compiler based on High-Level Synthesis (HLS) called hls4ml is used. Furthermore, an optimization using both compression and quantization of Neural Networks is performed to obtain sensible reduction in model size, latency and energy consumption.
-
Notifications
You must be signed in to change notification settings - Fork 3
LorenzoValente3/Autoencoder-for-FPGA
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
Autoencoder model for FPGA implementation using hls4ml. Repository for Applied Electronics Project.
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published