-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_aux_multimodal.py
201 lines (171 loc) · 6.61 KB
/
train_aux_multimodal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Standard libraries
from collections import defaultdict
# Third-party libraries
from omegaconf import DictConfig, OmegaConf
import hydra
from torch.utils.data import DataLoader
import torch
from pycox.models.loss import NLLLogistiHazardLoss
import numpy as np
# Local dependencies
from drim.trainers import AuxSurvivalTrainer
from drim.multimodal import MultimodalDataset
from drim.multimodal import MultimodalModel
from drim.models import MultimodalWrapper
from drim.datasets import SurvivalDataset
from drim.logger import logger
from drim.utils import (
seed_everything,
seed_worker,
prepare_data,
get_dataframes,
log_transform,
)
from drim.helpers import get_encoder, get_datasets, get_targets
@hydra.main(version_base=None, config_path="configs", config_name="multimodal")
def main(cfg: DictConfig) -> None:
cv_metrics = defaultdict(list)
# check if wandb key is in cfg
if "wandb" in cfg:
import wandb
wandb_logging = True
wandb.init(
name=f"aux_{cfg.aux_loss.name}_{cfg.fusion.name}_"
+ "_".join(cfg.general.modalities),
config={
k: v for k, v in OmegaConf.to_container(cfg).items() if k != "wandb"
},
**cfg.wandb,
)
else:
wandb_logging = False
logger.info("Starting multimodal cross-validation.")
logger.info("Modalities used: {}.", cfg.general.modalities)
for fold in range(cfg.general.n_folds):
logger.info("Starting fold {}", fold)
seed_everything(cfg.general.seed)
# Load the data
dataframes = get_dataframes(fold)
dataframes = {
split: prepare_data(dataframe, cfg.general.modalities)
for split, dataframe in dataframes.items()
}
cfg.general.save_path = (
f"./models/aux_{cfg.aux_loss.name}_{cfg.fusion.name}_split_{int(fold)}.pth"
)
for split, dataframe in dataframes.items():
logger.info(f"{split} samples: {len(dataframe)}")
train_datasets = {}
val_datasets = {}
test_datasets = {}
encoders = {}
logger.info("Loading models and preparing corresponding dataset...")
for modality in cfg.general.modalities:
encoder = get_encoder(modality, cfg).cuda()
encoders[modality] = encoder
datasets = get_datasets(dataframes, modality, fold, return_mask=True)
train_datasets[modality] = datasets["train"]
val_datasets[modality] = datasets["val"]
test_datasets[modality] = datasets["test"]
targets, cuts = get_targets(dataframes, cfg.general.n_outs)
dataset_train = MultimodalDataset(train_datasets, return_mask=True)
dataset_val = MultimodalDataset(val_datasets, return_mask=True)
dataset_test = MultimodalDataset(test_datasets, return_mask=True)
train_data = SurvivalDataset(dataset_train, *targets["train"])
val_data = SurvivalDataset(dataset_val, *targets["val"])
test_data = SurvivalDataset(dataset_test, *targets["test"])
dataloaders = {
"train": DataLoader(
train_data, shuffle=True, worker_init_fn=seed_worker, **cfg.dataloader
),
"val": DataLoader(
val_data, shuffle=False, worker_init_fn=seed_worker, **cfg.dataloader
),
"test": DataLoader(
test_data, shuffle=False, worker_init_fn=seed_worker, **cfg.dataloader
),
}
if cfg.fusion.name in ["mean", "concat", "max", "sum", "masked_mean"]:
from drim.fusion import ShallowFusion
fusion = ShallowFusion(cfg.fusion.name)
elif cfg.fusion.name == "maf":
from drim.fusion import MaskedAttentionFusion
fusion = MaskedAttentionFusion(
dim=cfg.general.dim, dropout=cfg.general.dropout, **cfg.fusion.params
)
elif cfg.fusion.name == "tensor":
from drim.fusion import TensorFusion
fusion = TensorFusion(
modalities=cfg.general.modalities,
input_dim=cfg.general.dim,
projected_dim=cfg.general.dim,
output_dim=cfg.general.dim,
dropout=cfg.general.dropout,
)
else:
raise NotImplementedError
fusion.cuda()
encoder = MultimodalModel(encoders, fusion=fusion)
if cfg.fusion.name == "concat":
size = cfg.general.dim * len(cfg.general.modalities)
else:
size = cfg.general.dim
model = MultimodalWrapper(encoder, size, n_outs=cfg.general.n_outs)
# model = model.cuda()
logger.info("Done!")
# define optimizer and scheduler
optimizer = torch.optim.AdamW(model.parameters(), **cfg.optimizer.params)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, **cfg.scheduler
)
# define task criterion
task_criterion = NLLLogistiHazardLoss()
# define auxiliary criterion
if cfg.aux_loss.name == "contrastive":
from drim.losses import ContrastiveLoss
aux_loss = ContrastiveLoss()
elif cfg.aux_loss.name == "mmo":
from drim.losses import MMOLoss
aux_loss = MMOLoss()
trainer = AuxSurvivalTrainer(
model=model,
optimizer=optimizer,
scheduler=scheduler,
dataloaders=dataloaders,
task_criterion=task_criterion,
cfg=cfg,
wandb_logging=wandb_logging,
cuts=cuts,
aux_loss=aux_loss,
)
trainer.fit()
val_logs = trainer.evaluate("val")
test_logs = trainer.evaluate("test")
# add to cv_metrics
for key, value in val_logs.items():
cv_metrics[key].append(value)
for key, value in test_logs.items():
cv_metrics[key].append(value)
logger.info("Fold {} done!", fold)
# log first the mean ± std of the validation metrics
logs = {}
for key, value in cv_metrics.items():
if key in [
"test/c_index",
"test/cs_score",
"test/inbll",
"test/ibs",
"val/c_index",
"val/cs_score",
"val/inbll",
"val/ibs",
]:
mean, std = np.mean(value), np.std(value)
logger.info(f"{key}: {mean:.4f} ± {std:.4f}")
logs[f"fin/{'_'.join(key.split('/'))}_mean"] = mean
logs[f"fin/{'_'.join(key.split('/'))}_std"] = std
if wandb_logging:
wandb.log(logs)
wandb.finish()
if __name__ == "__main__":
main()