-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_ce.py
executable file
·485 lines (404 loc) · 18.4 KB
/
main_ce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
from __future__ import print_function
import argparse
import math
import os
import random
import sys
import time
import pickle
import numpy as np
import tensorboard_logger as tb_logger
import torch
import torch.backends.cudnn as cudnn
from torchvision import transforms, datasets
import torchvision.models as models
import torch.nn as nn
from networks.resnet_big import SupCEResNet
from ood_util import set_ood_loader, ood_conf
from util import AverageMeter
from util import adjust_learning_rate, warmup_learning_rate, accuracy
from util import set_optimizer, save_model
from vit.src.data_loaders import create_dataloaders
from vit.src.model import VisionTransformer as ViT
from vit.src.utils import write_json
try:
import apex
from apex import amp, optimizers
except ImportError:
pass
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--print_freq', type=int, default=100,
help='print frequency')
parser.add_argument('--save_freq', type=int, default=50,
help='_save frequency')
parser.add_argument('--batch_size', type=int, default=256,
help='batch_size')
parser.add_argument('--num_workers', type=int, default=8,
help='num of workers to use')
parser.add_argument('--epochs', type=int, default=500,
help='number of training epochs')
# optimization
parser.add_argument('--optimizer', type=str, default='SGD',
choices=['LARS', 'SGD', 'RMSprop'], help='optimizer')
parser.add_argument("--image-size", type=int, default=32, help="input image size", choices=[32, 48, 96, 128, 160, 224, 384])
parser.add_argument('--learning_rate', type=float, default=0.8,
help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='350,400,450',
help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1,
help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum')
parser.add_argument('--ood', action='store_true',
help='validate out of distribution')
parser.add_argument('--reduce_lr', type=float, default=0.0,
# todo donot change this for contrastive training, 0 ignores reduce_lr
help='reduce learning rate for detector')
parser.add_argument('--contrastive', action='store_true', help='using distributed loss calculations across multiple GPUs')
# model dataset
parser.add_argument('--model', type=str, default='resnet50')
parser.add_argument('--pretrained', action='store_true', help='for pretrained imagenet resnet model')
parser.add_argument('--use_subset', type=str, default=None)
parser.add_argument('--dataset', type=str, default='cifar10',
choices=['cifar10', 'cifar100', 'ImageNet', 'stl10'], help='dataset')
parser.add_argument("--num-classes", type=int, default=1000, help="number of classes in dataset")
parser.add_argument('--data_folder', default='./datasets/', type=str)
parser.add_argument("--data-dir", type=str, default='./datasets/', help='data folder')
parser.add_argument('--albumentation', action='store_true', help='use albumentation as data aug')
# other setting
parser.add_argument('--cosine', action='store_true',
help='using cosine annealing')
parser.add_argument('--syncBN', action='store_true',
help='using synchronized batch normalization')
parser.add_argument('--warm', action='store_true',
help='warm-up for large batch training')
parser.add_argument('--trial', type=str, default='0',
help='id for recording multiple runs')
parser.add_argument('--seed', default=None, type=int)
parser.add_argument('--root_folder', default='.', type=str)
opt = parser.parse_args()
# set the path according to the environment
#opt.data_folder = './datasets/'
opt.model_path = opt.root_folder + '/_save/SupCE/{}_models'.format(opt.dataset)
opt.tb_path = opt.root_folder + '/_save/SupCE/{}_tensorboard'.format(opt.dataset)
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
opt.model_name = 'SupCE_{}_{}_lr_{}_decay_{}_bsz_{}_trial_{}_seed_{}'.\
format(opt.dataset, opt.model, opt.learning_rate, opt.weight_decay,
opt.batch_size, opt.trial, opt.seed)
if opt.cosine:
opt.model_name = '{}_cosine'.format(opt.model_name)
# warm-up for large-batch training,
if opt.batch_size > 256:
opt.warm = True
if opt.warm:
opt.model_name = '{}_warm'.format(opt.model_name)
opt.warmup_from = 0.01
opt.warm_epochs = 10
if opt.cosine:
eta_min = opt.learning_rate * (opt.lr_decay_rate ** 3)
opt.warmup_to = eta_min + (opt.learning_rate - eta_min) * (
1 + math.cos(math.pi * opt.warm_epochs / opt.epochs)) / 2
else:
opt.warmup_to = opt.learning_rate
opt.tb_folder = os.path.join(opt.tb_path, opt.model_name)
if not os.path.isdir(opt.tb_folder):
os.makedirs(opt.tb_folder)
opt.save_folder = os.path.join(opt.model_path, opt.model_name)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
# now open and wrtie parameter into file
to_write = open(os.path.join(opt.save_folder, 'param.txt'), 'w')
print("~~~~~~~~ Hyperparameters used: ~~~~~~~")
for x, y in vars(opt).items():
print("{} : {}".format(x, y))
to_write.write(str(x) + ' >>> ' + str(y) + '\n')
to_write.close()
return opt
def set_loader(opt, img_size=32):
# construct data loader
if opt.dataset == 'cifar10':
mean = (0.5, 0.5, 0.5) if opt.model=='vit' else (0.4914, 0.4822, 0.4465)
std = (0.5, 0.5, 0.5) if opt.model=='vit' else (0.2023, 0.1994, 0.2010)
elif opt.dataset == 'cifar100':
mean = (0.5, 0.5, 0.5) if opt.model=='vit' else (0.5071, 0.4867, 0.4408)
std = (0.5, 0.5, 0.5) if opt.model=='vit' else (0.2675, 0.2565, 0.2761)
else:
raise ValueError('dataset not supported: {}'.format(opt.dataset))
normalize = transforms.Normalize(mean=mean, std=std)
train_transform = transforms.Compose([
transforms.RandomResizedCrop(size=img_size, scale=(0.2, 1.)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
val_transform = transforms.Compose([
transforms.Resize(img_size),
transforms.ToTensor(),
normalize,
])
if opt.dataset == 'cifar10':
train_dataset = datasets.CIFAR10(root=opt.data_folder,
transform=train_transform,
download=True)
val_dataset = datasets.CIFAR10(root=opt.data_folder,
train=False,
transform=val_transform)
elif opt.dataset == 'cifar100':
train_dataset = datasets.CIFAR100(root=opt.data_folder,
transform=train_transform,
download=True)
val_dataset = datasets.CIFAR100(root=opt.data_folder,
train=False,
transform=val_transform)
else:
raise ValueError(opt.dataset)
train_sampler = None
if opt.use_subset:
print("Currently using CIFAR 10 subset")
cls_idx = [j for j,cls in enumerate(train_dataset.classes) if cls in ['airplane', 'automobile','bird', 'cat']]
train_idx = [i for i, x in enumerate(train_dataset.targets) if x in cls_idx]
val_idx = [i for i, x in enumerate(val_dataset.targets) if x in cls_idx]
train_subset = torch.utils.data.Subset(train_dataset, train_idx)
val_subset = torch.utils.data.Subset(val_dataset, val_idx)
train_loader = torch.utils.data.DataLoader(
train_subset if opt.use_subset else train_dataset, batch_size=opt.batch_size, shuffle=(train_sampler is None),
num_workers=opt.num_workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
val_subset if opt.use_subset else val_dataset, batch_size=opt.batch_size, shuffle=False,
num_workers=8, pin_memory=True)
return train_loader, val_loader
def set_model(opt):
if opt.model=='vit':
# CHANGE commented unspecified args out
model = ViT(image_size=(opt.image_size, opt.image_size),
patch_size=(opt.patch_size, opt.patch_size),
#emb_dim=opt.emb_dim,
#mlp_dim=opt.mlp_dim,
num_heads=opt.num_heads,
num_layers=opt.num_layers,
num_classes=opt.num_classes,
#attn_dropout_rate=opt.attn_dropout_rate,
#dropout_rate=opt.dropout_rate)
)
else:
if opt.pretrained:
model = eval("models.{}".format(opt.model))(pretrained=opt.pretrained)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, opt.num_classes)
else:
model = SupCEResNet(name=opt.model, num_classes=opt.num_classes, tv_model=opt.pretrained)
criterion = nn.CrossEntropyLoss()
# enable synchronized Batch Normalization
if opt.syncBN:
model = apex.parallel.convert_syncbn_model(model)
if torch.cuda.is_available():
if torch.cuda.device_count() > 1:
if opt.pretrained:
model = torch.nn.DataParallel(model)
else:
model.encoder = torch.nn.DataParallel(model.encoder)
model = model.cuda()
criterion = criterion.cuda()
cudnn.benchmark = True
return model, criterion
def train(train_loader, model, criterion, optimizer, epoch, opt):
"""one epoch training"""
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
end = time.time()
for idx, (images, labels) in enumerate(train_loader):
data_time.update(time.time() - end)
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
bsz = labels.shape[0]
# warm-up learning rate
warmup_learning_rate(opt, epoch, idx, len(train_loader), optimizer)
# compute loss
output = model(images)
loss = criterion(output, labels)
# update metric
losses.update(loss.item(), bsz)
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
top1.update(acc1[0], bsz)
# SGD
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print info
if (idx + 1) % opt.print_freq == 0:
print('Train: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss {loss.val:.3f} ({loss.avg:.3f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, idx + 1, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
sys.stdout.flush()
return losses.avg, top1.avg
def validate(val_loader, model, criterion, opt, in_out_idx):
"""validation"""
model.eval()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
#for ood
top_ood = AverageMeter()
in_conf = AverageMeter()
out_conf = AverageMeter()
with torch.no_grad():
end = time.time()
max_len = len(val_loader.dataset)
batch_size = val_loader.batch_size
for idx, (images, labels) in enumerate(val_loader):
# sanity check
if opt.ood:
index_list = list(range(idx * batch_size, min(((idx * batch_size) + batch_size), max_len)))
target_array = np.asarray(val_loader.dataset.targets)
assert (target_array[index_list] == labels.data.numpy()).all()
images = images.float().cuda()
labels = labels.cuda()
bsz = labels.shape[0]
# forward
output = model(images)
loss = criterion(output, labels)
# update metric
losses.update(loss.item(), bsz)
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
top1.update(acc1[0], bsz)
if opt.ood:
in_acc1, in_score, out_score, in_len, out_len = ood_conf(output, labels, in_out_idx[index_list])
top_ood.update(in_acc1[0][0], in_len)
in_conf.update(in_score, in_len)
out_conf.update(out_score, out_len)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % opt.print_freq == 0:
if opt.ood:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'In_Acc@1 {top_ood.val:.3f} ({top_ood.avg:.3f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'In score {in_score.val:.3f}\t'
'Out score {out_score.val:.3f}\t'
.format(
idx, len(val_loader), batch_time=batch_time,
loss=losses, top_ood=top_ood, top1=top1, in_score=in_conf, out_score=out_conf))
else:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
idx, len(val_loader), batch_time=batch_time,
loss=losses, top1=top1))
if opt.ood:
print(' * Acc@1 {top1.avg:.3f}\t in acc {i_acc.avg:.3f}\t in score {in_score.avg:.3f}\t out score {out_score.avg:.3f}'.format(
top1=top1, i_acc=top_ood, in_score=in_conf, out_score=out_conf))
else:
print(' * Acc@1 {top1.avg:.3f}'.format(top1=top1))
return losses.avg, top1.avg
def main():
best_acc = 0
opt = parse_option()
#CHANGE
opt.patch_size = 7
opt.num_heads = 12
opt.num_layers = 12
if opt.seed !=None: # fix the seed for reproducibility
torch.manual_seed(opt.seed)
np.random.seed(opt.seed)
random.seed(opt.seed)
# build data loader
if opt.ood:
train_loader, val_loader, out_index = set_ood_loader(opt)
else:
train_loader, val_loader = create_dataloaders(opt)
out_index = None
# build model and criterion
model, criterion = set_model(opt)
# build optimizer
params = [p for n, p in (list(model.named_parameters())) if p.requires_grad]
optimizer = set_optimizer(opt, params)
# tensorboard
logger = tb_logger.Logger(logdir=opt.tb_folder, flush_secs=2)
# saving the model before training (epoch 0)
epoch = 0
save_file = os.path.join(
opt.save_folder, 'ckpt_epoch_{epoch}.pth'.format(epoch=epoch))
save_model(model, optimizer, opt, epoch, save_file)
val_acc_list = []
save_epoch_list = []
# training routine
for epoch in range(1, opt.epochs + 1):
adjust_learning_rate(opt, optimizer, epoch)
# train for one epoch
time1 = time.time()
loss, train_acc = train(train_loader, model, criterion, optimizer, epoch, opt)
time2 = time.time()
print('epoch {}, total time {:.2f}'.format(epoch, time2 - time1))
# tensorboard logger
logger.log_value('train_loss', loss, epoch)
logger.log_value('train_acc', train_acc, epoch)
logger.log_value('learning_rate', optimizer.param_groups[0]['lr'], epoch)
# evaluation
loss, val_acc = validate(val_loader, model, criterion, opt, out_index)
logger.log_value('val_loss', loss, epoch)
logger.log_value('val_acc', val_acc, epoch)
# CHANGE to make tensor json serializable
#val_acc_list.append(val_acc)
val_acc_list.append(val_acc.item())
save_epoch_list.append(epoch)
if val_acc > best_acc:
best_acc = val_acc
save_file = os.path.join(
opt.save_folder, 'ckpt_epoch_best.pth')
save_model(model, optimizer, opt, epoch, save_file)
if epoch % opt.save_freq == 0:
save_file = os.path.join(
opt.save_folder, 'ckpt_epoch_{epoch}.pth'.format(epoch=epoch))
save_model(model, optimizer, opt, epoch, save_file)
# _save the last model
# save_file = os.path.join(
# opt.save_folder, 'last.pth')
# save_model(model, optimizer, opt, opt.epochs, save_file)
print('best accuracy: {:.2f}'.format(best_acc))
best_curr_acc = {'acc_list': val_acc_list, 'save_epoch': save_epoch_list, }
write_json(best_curr_acc, os.path.join(opt.save_folder, 'acc.json'))
pickle_obj = {'Test_acc': val_acc_list, 'Epoch': save_epoch_list}
fname = os.path.join(opt.save_folder, 'accuracy.pickle')
with open(fname, 'wb') as f1:
pickle.dump(pickle_obj, f1)
if __name__ == '__main__':
run_on_all_data = False # todo for running all the data dataset
if run_on_all_data:
import sys
dataset_list = ['cifar10', 'cifar100', 'ImageNet']
for dataset in dataset_list:
index_of_ds = sys.argv.index('--dataset') + 1
index_ds_cls = sys.argv.index('--num-classes') + 1
if dataset == 'cifar10':
sys.argv[index_of_ds] = 'cifar10'
sys.argv[index_ds_cls] = str(10)
elif dataset == 'cifar100':
sys.argv[index_of_ds] = 'cifar100'
sys.argv[index_ds_cls] = str(100)
else:
sys.argv[index_of_ds] = 'ImageNet'
sys.argv[index_ds_cls] = str(30)
sys.argv[sys.argv.index('--image-size')+1] = str(224)
main()
else:
main()