-
Notifications
You must be signed in to change notification settings - Fork 0
/
delunator.js
497 lines (413 loc) · 15.8 KB
/
delunator.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/*
Credits to: https://github.com/mapbox/delaunator
*/
const EPSILON = Math.pow(2, -52);
const EDGE_STACK = new Uint32Array(512);
class Delaunator {
static from(points, getX = defaultGetX, getY = defaultGetY) {
const n = points.length;
const coords = new Float64Array(n * 2);
for (let i = 0; i < n; i++) {
const p = points[i];
coords[2 * i] = getX(p);
coords[2 * i + 1] = getY(p);
}
return new Delaunator(coords);
}
constructor(coords) {
const n = coords.length >> 1;
if (n > 0 && typeof coords[0] !== 'number') throw new Error('Expected coords to contain numbers.');
this.coords = coords;
// arrays that will store the triangulation graph
const maxTriangles = Math.max(2 * n - 5, 0);
this._triangles = new Uint32Array(maxTriangles * 3);
this._halfedges = new Int32Array(maxTriangles * 3);
// temporary arrays for tracking the edges of the advancing convex hull
this._hashSize = Math.ceil(Math.sqrt(n));
this._hullPrev = new Uint32Array(n); // edge to prev edge
this._hullNext = new Uint32Array(n); // edge to next edge
this._hullTri = new Uint32Array(n); // edge to adjacent triangle
this._hullHash = new Int32Array(this._hashSize).fill(-1); // angular edge hash
// temporary arrays for sorting points
this._ids = new Uint32Array(n);
this._dists = new Float64Array(n);
this.update();
}
update() {
const {coords, _hullPrev: hullPrev, _hullNext: hullNext, _hullTri: hullTri, _hullHash: hullHash} = this;
const n = coords.length >> 1;
// populate an array of point indices; calculate input data bbox
let minX = Infinity;
let minY = Infinity;
let maxX = -Infinity;
let maxY = -Infinity;
for (let i = 0; i < n; i++) {
const x = coords[2 * i];
const y = coords[2 * i + 1];
if (x < minX) minX = x;
if (y < minY) minY = y;
if (x > maxX) maxX = x;
if (y > maxY) maxY = y;
this._ids[i] = i;
}
const cx = (minX + maxX) / 2;
const cy = (minY + maxY) / 2;
let minDist = Infinity;
let i0, i1, i2;
// pick a seed point close to the center
for (let i = 0; i < n; i++) {
const d = dist(cx, cy, coords[2 * i], coords[2 * i + 1]);
if (d < minDist) {
i0 = i;
minDist = d;
}
}
const i0x = coords[2 * i0];
const i0y = coords[2 * i0 + 1];
minDist = Infinity;
// find the point closest to the seed
for (let i = 0; i < n; i++) {
if (i === i0) continue;
const d = dist(i0x, i0y, coords[2 * i], coords[2 * i + 1]);
if (d < minDist && d > 0) {
i1 = i;
minDist = d;
}
}
let i1x = coords[2 * i1];
let i1y = coords[2 * i1 + 1];
let minRadius = Infinity;
// find the third point which forms the smallest circumcircle with the first two
for (let i = 0; i < n; i++) {
if (i === i0 || i === i1) continue;
const r = circumradius(i0x, i0y, i1x, i1y, coords[2 * i], coords[2 * i + 1]);
if (r < minRadius) {
i2 = i;
minRadius = r;
}
}
let i2x = coords[2 * i2];
let i2y = coords[2 * i2 + 1];
if (minRadius === Infinity) {
// order collinear points by dx (or dy if all x are identical)
// and return the list as a hull
for (let i = 0; i < n; i++) {
this._dists[i] = (coords[2 * i] - coords[0]) || (coords[2 * i + 1] - coords[1]);
}
quicksort(this._ids, this._dists, 0, n - 1);
const hull = new Uint32Array(n);
let j = 0;
for (let i = 0, d0 = -Infinity; i < n; i++) {
const id = this._ids[i];
if (this._dists[id] > d0) {
hull[j++] = id;
d0 = this._dists[id];
}
}
this.hull = hull.subarray(0, j);
this.triangles = new Uint32Array(0);
this.halfedges = new Uint32Array(0);
return;
}
// swap the order of the seed points for counter-clockwise orientation
if (orient(i0x, i0y, i1x, i1y, i2x, i2y)) {
const i = i1;
const x = i1x;
const y = i1y;
i1 = i2;
i1x = i2x;
i1y = i2y;
i2 = i;
i2x = x;
i2y = y;
}
const center = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y);
this._cx = center.x;
this._cy = center.y;
for (let i = 0; i < n; i++) {
this._dists[i] = dist(coords[2 * i], coords[2 * i + 1], center.x, center.y);
}
// sort the points by distance from the seed triangle circumcenter
quicksort(this._ids, this._dists, 0, n - 1);
// set up the seed triangle as the starting hull
this._hullStart = i0;
let hullSize = 3;
hullNext[i0] = hullPrev[i2] = i1;
hullNext[i1] = hullPrev[i0] = i2;
hullNext[i2] = hullPrev[i1] = i0;
hullTri[i0] = 0;
hullTri[i1] = 1;
hullTri[i2] = 2;
hullHash.fill(-1);
hullHash[this._hashKey(i0x, i0y)] = i0;
hullHash[this._hashKey(i1x, i1y)] = i1;
hullHash[this._hashKey(i2x, i2y)] = i2;
this.trianglesLen = 0;
this._addTriangle(i0, i1, i2, -1, -1, -1);
for (let k = 0, xp, yp; k < this._ids.length; k++) {
const i = this._ids[k];
const x = coords[2 * i];
const y = coords[2 * i + 1];
// skip near-duplicate points
if (k > 0 && Math.abs(x - xp) <= EPSILON && Math.abs(y - yp) <= EPSILON) continue;
xp = x;
yp = y;
// skip seed triangle points
if (i === i0 || i === i1 || i === i2) continue;
// find a visible edge on the convex hull using edge hash
let start = 0;
for (let j = 0, key = this._hashKey(x, y); j < this._hashSize; j++) {
start = hullHash[(key + j) % this._hashSize];
if (start !== -1 && start !== hullNext[start]) break;
}
start = hullPrev[start];
let e = start, q;
while (q = hullNext[e], !orient(x, y, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1])) {
e = q;
if (e === start) {
e = -1;
break;
}
}
if (e === -1) continue; // likely a near-duplicate point; skip it
// add the first triangle from the point
let t = this._addTriangle(e, i, hullNext[e], -1, -1, hullTri[e]);
// recursively flip triangles from the point until they satisfy the Delaunay condition
hullTri[i] = this._legalize(t + 2);
hullTri[e] = t; // keep track of boundary triangles on the hull
hullSize++;
// walk forward through the hull, adding more triangles and flipping recursively
let n = hullNext[e];
while (q = hullNext[n], orient(x, y, coords[2 * n], coords[2 * n + 1], coords[2 * q], coords[2 * q + 1])) {
t = this._addTriangle(n, i, q, hullTri[i], -1, hullTri[n]);
hullTri[i] = this._legalize(t + 2);
hullNext[n] = n; // mark as removed
hullSize--;
n = q;
}
// walk backward from the other side, adding more triangles and flipping
if (e === start) {
while (q = hullPrev[e], orient(x, y, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1])) {
t = this._addTriangle(q, i, e, -1, hullTri[e], hullTri[q]);
this._legalize(t + 2);
hullTri[q] = t;
hullNext[e] = e; // mark as removed
hullSize--;
e = q;
}
}
// update the hull indices
this._hullStart = hullPrev[i] = e;
hullNext[e] = hullPrev[n] = i;
hullNext[i] = n;
// save the two new edges in the hash table
hullHash[this._hashKey(x, y)] = i;
hullHash[this._hashKey(coords[2 * e], coords[2 * e + 1])] = e;
}
this.hull = new Uint32Array(hullSize);
for (let i = 0, e = this._hullStart; i < hullSize; i++) {
this.hull[i] = e;
e = hullNext[e];
}
// trim typed triangle mesh arrays
this.triangles = this._triangles.subarray(0, this.trianglesLen);
this.halfedges = this._halfedges.subarray(0, this.trianglesLen);
}
_hashKey(x, y) {
return Math.floor(pseudoAngle(x - this._cx, y - this._cy) * this._hashSize) % this._hashSize;
}
_legalize(a) {
const {_triangles: triangles, _halfedges: halfedges, coords} = this;
let i = 0;
let ar = 0;
// recursion eliminated with a fixed-size stack
while (true) {
const b = halfedges[a];
/* if the pair of triangles doesn't satisfy the Delaunay condition
* (p1 is inside the circumcircle of [p0, pl, pr]), flip them,
* then do the same check/flip recursively for the new pair of triangles
*
* pl pl
* /||\ / \
* al/ || \bl al/ \a
* / || \ / \
* / a||b \ flip /___ar___\
* p0\ || /p1 => p0\---bl---/p1
* \ || / \ /
* ar\ || /br b\ /br
* \||/ \ /
* pr pr
*/
const a0 = a - a % 3;
ar = a0 + (a + 2) % 3;
if (b === -1) { // convex hull edge
if (i === 0) break;
a = EDGE_STACK[--i];
continue;
}
const b0 = b - b % 3;
const al = a0 + (a + 1) % 3;
const bl = b0 + (b + 2) % 3;
const p0 = triangles[ar];
const pr = triangles[a];
const pl = triangles[al];
const p1 = triangles[bl];
const illegal = inCircle(
coords[2 * p0], coords[2 * p0 + 1],
coords[2 * pr], coords[2 * pr + 1],
coords[2 * pl], coords[2 * pl + 1],
coords[2 * p1], coords[2 * p1 + 1]);
if (illegal) {
triangles[a] = p1;
triangles[b] = p0;
const hbl = halfedges[bl];
// edge swapped on the other side of the hull (rare); fix the halfedge reference
if (hbl === -1) {
let e = this._hullStart;
do {
if (this._hullTri[e] === bl) {
this._hullTri[e] = a;
break;
}
e = this._hullPrev[e];
} while (e !== this._hullStart);
}
this._link(a, hbl);
this._link(b, halfedges[ar]);
this._link(ar, bl);
const br = b0 + (b + 1) % 3;
// don't worry about hitting the cap: it can only happen on extremely degenerate input
if (i < EDGE_STACK.length) {
EDGE_STACK[i++] = br;
}
} else {
if (i === 0) break;
a = EDGE_STACK[--i];
}
}
return ar;
}
_link(a, b) {
this._halfedges[a] = b;
if (b !== -1) this._halfedges[b] = a;
}
// add a new triangle given vertex indices and adjacent half-edge ids
_addTriangle(i0, i1, i2, a, b, c) {
const t = this.trianglesLen;
this._triangles[t] = i0;
this._triangles[t + 1] = i1;
this._triangles[t + 2] = i2;
this._link(t, a);
this._link(t + 1, b);
this._link(t + 2, c);
this.trianglesLen += 3;
return t;
}
}
// monotonically increases with real angle, but doesn't need expensive trigonometry
function pseudoAngle(dx, dy) {
const p = dx / (Math.abs(dx) + Math.abs(dy));
return (dy > 0 ? 3 - p : 1 + p) / 4; // [0..1]
}
function dist(ax, ay, bx, by) {
const dx = ax - bx;
const dy = ay - by;
return dx * dx + dy * dy;
}
// return 2d orientation sign if we're confident in it through J. Shewchuk's error bound check
function orientIfSure(px, py, rx, ry, qx, qy) {
const l = (ry - py) * (qx - px);
const r = (rx - px) * (qy - py);
return Math.abs(l - r) >= 3.3306690738754716e-16 * Math.abs(l + r) ? l - r : 0;
}
// a more robust orientation test that's stable in a given triangle (to fix robustness issues)
function orient(rx, ry, qx, qy, px, py) {
return (orientIfSure(px, py, rx, ry, qx, qy) ||
orientIfSure(rx, ry, qx, qy, px, py) ||
orientIfSure(qx, qy, px, py, rx, ry)) < 0;
}
function inCircle(ax, ay, bx, by, cx, cy, px, py) {
const dx = ax - px;
const dy = ay - py;
const ex = bx - px;
const ey = by - py;
const fx = cx - px;
const fy = cy - py;
const ap = dx * dx + dy * dy;
const bp = ex * ex + ey * ey;
const cp = fx * fx + fy * fy;
return dx * (ey * cp - bp * fy) -
dy * (ex * cp - bp * fx) +
ap * (ex * fy - ey * fx) < 0;
}
function circumradius(ax, ay, bx, by, cx, cy) {
const dx = bx - ax;
const dy = by - ay;
const ex = cx - ax;
const ey = cy - ay;
const bl = dx * dx + dy * dy;
const cl = ex * ex + ey * ey;
const d = 0.5 / (dx * ey - dy * ex);
const x = (ey * bl - dy * cl) * d;
const y = (dx * cl - ex * bl) * d;
return x * x + y * y;
}
function circumcenter(ax, ay, bx, by, cx, cy) {
const dx = bx - ax;
const dy = by - ay;
const ex = cx - ax;
const ey = cy - ay;
const bl = dx * dx + dy * dy;
const cl = ex * ex + ey * ey;
const d = 0.5 / (dx * ey - dy * ex);
const x = ax + (ey * bl - dy * cl) * d;
const y = ay + (dx * cl - ex * bl) * d;
return {x, y};
}
function quicksort(ids, dists, left, right) {
if (right - left <= 20) {
for (let i = left + 1; i <= right; i++) {
const temp = ids[i];
const tempDist = dists[temp];
let j = i - 1;
while (j >= left && dists[ids[j]] > tempDist) ids[j + 1] = ids[j--];
ids[j + 1] = temp;
}
} else {
const median = (left + right) >> 1;
let i = left + 1;
let j = right;
swap(ids, median, i);
if (dists[ids[left]] > dists[ids[right]]) swap(ids, left, right);
if (dists[ids[i]] > dists[ids[right]]) swap(ids, i, right);
if (dists[ids[left]] > dists[ids[i]]) swap(ids, left, i);
const temp = ids[i];
const tempDist = dists[temp];
while (true) {
do i++; while (dists[ids[i]] < tempDist);
do j--; while (dists[ids[j]] > tempDist);
if (j < i) break;
swap(ids, i, j);
}
ids[left + 1] = ids[j];
ids[j] = temp;
if (right - i + 1 >= j - left) {
quicksort(ids, dists, i, right);
quicksort(ids, dists, left, j - 1);
} else {
quicksort(ids, dists, left, j - 1);
quicksort(ids, dists, i, right);
}
}
}
function swap(arr, i, j) {
const tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
function defaultGetX(p) {
return p.position.x;
}
function defaultGetY(p) {
return p.position.y;
}