-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathLife_Cycle_final.m
104 lines (72 loc) · 2.57 KB
/
Life_Cycle_final.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
%Life-cycle model of consumption and saving (T periods)
%Written by Michael Hatcher (m.c.hatcher@soton.ac.uk) in 2017.
%Fast and short version as per the slides
clear; clc;
%------------------------
%Housekeeping
%------------------------
beta = 0.96; r = 0.035; T = 80;
% Since r < 1/beta-1 optimal consumption path downward sloping
a = -0.01; b=2/3; c =1; % Parameters of income process (quadratic)
for t=1:T
Y(t) = a*t^2 + b*t + c;
if t >= 0.75*T
Y(t) = 0; %Retired from t = 60 onwards if T = 80
end
end
%----------------------------------------
%Simulating the model (guesses on A(1))
%----------------------------------------
Ainit = -15; %Initial value of wealth used in guess loop
Nguess = 200000;
A_vec = linspace(Ainit,-Ainit,Nguess); %Vector of guesses for A(1)
%Outer loop i (guess loop)
%Inner loop t (simulates consumption for each initial guess of A)
for i=1:Nguess
Aguess(i) = A_vec(i);
A(1) = Aguess(i);
C(1) = Y(1) - A(1);
C(2) = beta*(1+r)*C(1);
A(2) = Y(2) - C(2) + (1+r)*A(1);
for t=3:T
C(t) = beta*(1+r)*C(t-1);
A(t) = Y(t)-C(t) + (1+r)*A(t-1);
end
CCheck = C(T);
C(T) = Y(T) + (1+r)*A(T-1);
%Equals CCheck only if A(T) = 0;
gap(i) = abs(CCheck - C(T));
%Equal to abs(-A(T))
end
%Find optimal path
[gap_min, IndexU] = min(gap);
disp('Terminal wealth at our solution is')
gap_min
%----------------------------------------------------------
%Simulate optimal path of consumption, saving and wealth
%----------------------------------------------------------
Astar(1) = Aguess(IndexU);
Astar(2) = Y(2) - beta*(1+r)*Y(1) + (1+r)*(1+beta)*Astar(1);
Cstar(1) = Y(1) - Astar(1);
Cstar(2) = beta*(1+r)*Cstar(1);
Sstar(1) = 0; Sstar(2) = Astar(2);
%Simulate consumption path in periods 3 to T
for t=3:T
Cstar(t) = beta*(1+r)*Cstar(t-1);
Astar(t) = Y(t)-Cstar(t) + (1+r)*Astar(t-1);
Sstar(t) = Astar(t) - Astar(t-1);
%Alternative def: Sstar(t) = Y(t)-Cstar(t);
end
%-------------------
%Plot the results
%-------------------
subplot(2,1,1)
hold on, plot(Y), plot(Cstar, 'r')
%ylabel('Consumption, Income')
xlabel('Time')
legend('Income','Consumption')
subplot(2,1,2)
hold on, plot(Astar), plot(Sstar, '--r')
%ylabel('Wealth, Saving')
xlabel('Time')
legend('Wealth','Saving')