-
Notifications
You must be signed in to change notification settings - Fork 1
/
ict01ClassDemo.py
60 lines (43 loc) · 1.21 KB
/
ict01ClassDemo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 27 11:36:37 2021
Edited on Wed Jul 27 13:12:00 2021
@author: uqcleon4
"""
import numpy as np
import matplotlib.pyplot as plt
def f1(x):
return x*x*x
def f1Prime(x):
return 3*x*x
# Create arrays for x and f(x)
h = 0.5
x = np.arange(-5,6,h,dtype=float)
f = f1(x)
# Calculate the forward, backward, and central difference
forwardD = np.zeros_like(f)
forwardD[:-1] = (f[1:] - f[:-1])/h
backwardD = np.zeros_like(f)
backwardD[1:] = (f[1:]-f[:-1])/h
centralD = np.zeros_like(f)
centralD[1:-1] = (f[2:]-f[:-2])/(2*h)
# Calculate the error associated with each difference approach
fd = f1Prime(x)
errors = np.zeros((3,x.size))
errors[0,:-1] = fd[:-1] - forwardD[:-1]
errors[1,1:] = fd[1:] - backwardD[1:]
errors[2,1:-1] = fd[1:-1] - centralD[1:-1]
fig,ax =plt.subplots()
ax.plot(x, f,
x[:-1], forwardD[:-1], '-.',
x[1:], backwardD[1:], ':',
x[1:-1], centralD[1:-1], '--')
ax.grid()
ax.legend(["f", "forwardD", "backwardD", "centralD"])
fig2,ax2 = plt.subplots()
ax2.plot(x[:-1], errors[0,:-1], '-.',
x[1:], errors[1,1:], ':',
x[1:-1], errors[2,1:-1], '--')
ax2.grid()
ax2.legend(["forwardD", "backwardD", "centralD"])
plt.show()