diff --git a/vignettes/Replicate_literature_results_using_spINAR.Rmd b/vignettes/Replicate_literature_results_using_spINAR.Rmd index 856c6aa..1a34696 100644 --- a/vignettes/Replicate_literature_results_using_spINAR.Rmd +++ b/vignettes/Replicate_literature_results_using_spINAR.Rmd @@ -198,7 +198,7 @@ est_penal <- spinar_penal(data,1,0,1) Plot of the unpenalized and penalized estimated innovation distribution -```{r} +```{r eval=FLASE} par(mfrow=c(1,2)) barplot(est_unpenal[-1], ylim=c(0,1),names.arg=0:5, main="Unpenalized estimated \n innovation distribution") @@ -206,7 +206,7 @@ barplot(est_penal[-1], ylim=c(0,1),names.arg=0:5, main="Penalized estimated \n innovation distribution") ``` -![](https://github.com/MFaymon/spINAR/blob/main/vignette/barplots.png) +![](https://github.com/MFaymon/spINAR/blob/main/vignettes/barplots.png) ## References * Faymonville, M., Jentsch, C., Weiß, C.H. and Aleksandrov, B. (2022). "Semiparametric Estimation of INAR Models using Roughness Penalization". Statistical Methods & Applications. [DOI](https://doi.org/10.1007/s10260-022-00655-0)