-
Notifications
You must be signed in to change notification settings - Fork 3
/
drisee.py
executable file
·600 lines (552 loc) · 25 KB
/
drisee.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
#!/usr/bin/env python
import os, sys, re, time, datetime, hashlib, shutil
import subprocess
import cStringIO
import string, random
from Bio import SeqIO
from random import randrange
from optparse import OptionParser
from multiprocessing import Pool
__doc__ = """
Script to calculate sequence error.
Input: fasta/fastq file to get error on
Output: error matrix file
STDOUT: Runtime summary stats"""
LOG_FILE = ''
ITER_MAX = 0
CONV_MIN = 0
PREF_LEN = 0
def ip (a,b, d): # takes two sequences and offset and returns (number of matches, overlap length)
assert len(b) >= len(a)
if d < 0:
r = len(a) + d
elif (len(a) + d) > len(b):
r = len(b) - d
else:
r= len(a)
c=0
for i in range( 0, r ) :
if (a[i] == b[i+d] and a[i] != "N") :
c+=1
if r==0: r=1
return c ,r
def align ( sequence, adapter ): # takes two sequences, returns best alignment (number of matches, alignlength, offset)
if len(sequence) > len(adapter) :
a, b = adapter, sequence
else:
a, b = sequence, adapter
assert len(b) >= len(a)
la = len(a)
lb = len(b)
bestm = 0
bestr = 0
besto = 0
for i in range(-len(a), len(b)):
(m,r) = ip(a, b, i )
c = float(m)/float(r)
if m > bestm and c >= MINALIGNID and r >= MINOVERLAP :
bestm = m
besto = i
bestr = r
return (bestm , bestr, besto)
def bestalign( sequence, adapters):
type(sequence)
type(adapters)
besta = 0
bestk = 0
for key in adapters.keys():
(m,r,o) = align(sequence, adapters[key])
if m > besta:
besta = m
bestk = key
return (besta, bestk)
def write_file(text, fname, append=None):
if append:
mode = 'a'
else:
mode = 'w'
outhdl = open(fname, mode)
outhdl.write(text)
outhdl.close()
def run_cmd(cmd, in_pipe=None, output=None):
if not output:
output = subprocess.PIPE
if in_pipe:
proc_in = subprocess.Popen( in_pipe, stdout=subprocess.PIPE )
proc = subprocess.Popen( cmd, stdin=proc_in.stdout, stdout=output, stderr=subprocess.PIPE )
else:
proc = subprocess.Popen( cmd, stdout=output, stderr=subprocess.PIPE )
stdout, stderr = proc.communicate()
if proc.returncode != 0:
raise IOError("%s\n%s"%(" ".join(cmd), stderr))
return stdout, stderr
def random_truncate(items, cutoff):
if (cutoff < 1) or (len(items) < 2) or (len(items) <= cutoff):
return items
# randomize array (fisher yates shuffle)
i = len(items)
while i > 1:
i = i - 1
j = randrange(i) # 0 <= j <= i-1
items[j], items[i] = items[i], items[j]
return items[:cutoff]
def random_str(size=6):
chars = string.ascii_letters + string.digits
return ''.join(random.choice(chars) for x in range(size))
# kk 11-9-12 # def seq_stats(in_file, fformat, verb):
#def seq_stats(in_file, opts.seq_type, verb):
def seq_stats(in_file, fformat, verb):
#fout, ferr = run_cmd(['seq_length_stats.py', '-f', '-i', in_file, '-t', fformat])
fout, ferr = run_cmd(['seq_length_stats.py', '-f', '-i', in_file, '-t', fformat])
if LOG_FILE and (fout or ferr):
write_file("\n".join([fout, ferr]), LOG_FILE, 1)
if verb and (fout or ferr):
sys.stdout.write("\n".join([fout, ferr]))
lines = fout.strip().split('\n')
stats = {}
for l in lines:
k, v = l.split('\t')
stats[k] = v
return stats
# kk 11-9-12 # def filter_seqs(in_file, out_file, stats, seqper, ambig_max, stdev_multi, filter_min, fformat):
#def filter_seqs(in_file, out_file, stats, seqper, ambig_max, stdev_multi, filter_min, opts.seq_type):
def filter_seqs(in_file, out_file, stats, seqper, ambig_max, stdev_multi, filter_min, fformat):
# get stats
avg_len = float(stats['average_length'])
sdv_len = float(stats['standard_deviation_length'])
min_len = int(avg_len - (sdv_len * stdev_multi))
max_len = int(avg_len + (sdv_len * stdev_multi))
if min_len < filter_min: min_len = filter_min + 1
if max_len < min_len: max_len = min_len + 1
# get filtered fasta file
output_hdl = open(out_file, 'w')
input_hdl = open(in_file, 'rU')
new_num = 0
try:
# kk 11-9-12 # for rec in SeqIO.parse(input_hdl, fformat):
for rec in SeqIO.parse(input_hdl, fformat):
rnd_num = random.random()
if seqper < rnd_num:
continue
ambig = 0
slen = len(rec.seq)
if (slen < min_len) or (slen > max_len):
continue
for char in rec.seq:
if (char == 'n') or (char == 'N'): ambig += 1
if ambig > ambig_max:
continue
new_num += 1
output_hdl.write(">%s\n%s\n" %(random_str(), rec.seq))
finally:
input_hdl.close()
output_hdl.close()
return new_num
def get_contaminated_md5_prefixes_from_fasta(in_file, prefix_len, adapters):
contaminated_md5s = {}
input_hdl = open(in_file, 'rU')
try:
for rec in SeqIO.parse(input_hdl, 'fasta'):
seq = str(rec.seq).upper()
prefix = seq[:prefix_len]
md5 = hashlib.md5( prefix ).hexdigest()
(a,b) = bestalign( rec.seq, adapters )
if a > 0:
contaminated_md5s[md5] = 1
finally:
input_hdl.close()
return contaminated_md5s
def bin_replicate_seqs(in_file, out_file, tmp_dir, prefix_len, nodes):
tmp_file = os.path.join(tmp_dir, os.path.basename(out_file)+'.tmp')
tmp_hdl = open(tmp_file, 'w')
input_hdl = open(in_file, 'rU')
try:
for rec in SeqIO.parse(input_hdl, 'fasta'):
seq = str(rec.seq).upper()
md5 = hashlib.md5( seq[:prefix_len] ).hexdigest()
tmp_hdl.write("%s\t%s\n" %(md5, rec.id))
finally:
input_hdl.close()
tmp_hdl.close()
smem = str(nodes * 2 * 1024) + 'M'
run_cmd(['sort', '-T', tmp_dir, '-S', smem, '-t', "\t", '-k', '1,1', '-o', out_file, tmp_file])
os.remove(tmp_file)
def filter_bins(fname, bin_min, total_max):
bins = {}
bin_num_out = open(fname+'.sum', 'w')
run_cmd(['uniq', '-c'], ['cut', '-f1', fname], bin_num_out)
bin_num_out.close()
bin_num_in = open(fname+'.sum', 'rU')
try:
for line in bin_num_in:
n, b = line.strip().split()
if int(n) >= bin_min:
bins[b] = n
finally:
bin_num_in.close()
return dict([(x,'') for x in random_truncate(bins.keys(), total_max)])
def get_sub_fasta(ids, index_seq, seq_file, sub_fasta):
# get sub fasta
id_echo = ['echo']
id_echo.extend(ids)
stdo,_x = run_cmd(['cdbyank', index_seq, '-d', seq_file], id_echo)
# get min length
seq_lens = []
str_hdl = cStringIO.StringIO(stdo)
for rec in SeqIO.parse(str_hdl, 'fasta'):
seq_lens.append( len(rec.seq) )
str_hdl.close()
# truncate all to min
min_seq = min(seq_lens)
out_hdl = open(sub_fasta, 'w')
str_hdl = cStringIO.StringIO(stdo)
for rec in SeqIO.parse(str_hdl, 'fasta'):
out_hdl.write(">%s\n%s\n"%(rec.id, rec.seq[:min_seq]))
str_hdl.close()
out_hdl.close()
def process_bin(bin_id):
bin_path = os.path.join(TMP_DIR, bin_id)
os.mkdir(bin_path)
cmd = ['run_find_steiner.pl','-i',bin_path+'.fasta','-o',bin_path+'.score','-l',bin_path+'.log','-t',bin_path,'--max_iter',str(ITER_MAX),'--min_conv',str(CONV_MIN)]
sto, ste = run_cmd(cmd)
if LOG_FILE and (sto or ste):
write_file("\n".join([sto, ste]), LOG_FILE, 1)
os.remove(bin_path+'.fasta')
shutil.rmtree(bin_path)
return bin_id
def process_data(data, match, error):
head = data.pop(0)
bps = head.split("\t")
for i, d in enumerate(data):
if not d: continue
counts = filter(lambda x: x != '', d.split("\t"))
counts = map(lambda x: int(x), counts)
if len(counts) != 6: continue
if len(match) <= i: match.insert( i, dict([(x,0) for x in bps]) )
if len(error) <= i: error.insert( i, dict([(x,0) for x in bps]) )
max_bp = max(counts)
for j, c in enumerate(counts):
if c == max_bp: match[i][ bps[j] ] += c
elif c < max_bp: error[i][ bps[j] ] += c
return bps, match, error
def create_output(bps, match, error, per):
total = 0
errs = dict([(x,0) for x in bps])
stext = [ "#\t" + "\t".join(bps) + "\t" + "\t".join(bps) ]
for i in range( len(match) ):
rsum = 0
row = []
for b in bps:
row.append( match[i][b] )
rsum += match[i][b]
if i > (PREF_LEN - 1):
total += match[i][b]
for b in bps:
row.append( error[i][b] )
rsum += error[i][b]
if i > (PREF_LEN - 1):
total += error[i][b]
errs[b] += error[i][b]
if per:
row = map(lambda x: "%f"%(((x * 1.0) / rsum) * 100), row)
else:
row = map(lambda x: str(x), row)
stext.append( "%d\t"%(i+1) + "\t".join(row) )
err_head = map(lambda x: "%s_err"%x, bps)
err_nums = map(lambda x: "%f"%(((errs[x] * 1.0) / total) * 100), bps)
err_sum = ((sum(errs.values()) * 1.0) / total) * 100
err_head.append('bp_err')
err_nums.append("%f"%err_sum)
stext.insert(0, "#\t"+"\t".join(err_nums))
stext.insert(0, "#\t"+"\t".join(err_head))
return err_sum, "\n".join(stext)
usage = "usage: %prog [options] input_seq_file output_stat_file\n" + __doc__
version = "%prog 1.5"
def main(args):
global TMP_DIR, LOG_FILE, ITER_MAX, CONV_MIN, PREF_LEN, MINALIGNID, MINOVERLAP
parser = OptionParser(usage=usage, version=version)
parser.add_option("-p", "--processes", dest="processes", type="int", default=8, help="Number of processes to use [default '8']")
#parser.add_option("-t", "--seq_type", dest="seq_type", default='fasta', help="Sequence type: fasta, fastq [default 'fasta']")
parser.add_option("-t", "--seq_type", dest="seq_type", default='fasta', help="Sequence type: fasta, fastq [default 'fasta']")
parser.add_option("-f", "--filter_seq", dest="filter", action="store_true", default=False, help="Run sequence filtering, length and ambig bp [default off]")
parser.add_option("-r", "--replicate_file", dest="rep_file", default=None, help="File with sorted replicate bins (bin_id, seq_id) [default to calculate replicates]")
parser.add_option("-d", "--tmp_dir", dest="tmpdir", default="/tmp", help="DIR for intermediate files (must be full path). Specified directory must already exist. Files are automatically deleted at analysis completion. [default '/tmp']")
parser.add_option("-l", "--log_file", dest="logfile", default=None, help="Detailed processing related stats [default '/dev/null']")
parser.add_option("", "--percent", dest="percent", action="store_true", default=True, help="Additional output (output_stat_file.per) with percent values [default on]")
parser.add_option("", "--prefix_length", dest="prefix", type="int", default=50, help="Prefix length for replicate bins [default 50]")
parser.add_option("-s", "--seq_max", dest="seq_max", type="int", default=1000000, help="Maximum number of reads to process (chosen randomly) [default 1000000]")
parser.add_option("-a", "--ambig_bp_max", dest="ambig_max", type="int", default=0, help="Maximum number of allowed ambiguity characters before rejection [default 0]")
parser.add_option("-m", "--stdev_multiplier", dest="stdev_multi", type="float", default=2.0, help="Multiplier to stddev to get min and max seq lengths [default 2.0]")
parser.add_option("-n", "--bin_read_min", dest="read_min", type="int", default=20, help="Minimum number of reads in bin to be considered [default 20]")
parser.add_option("-x", "--bin_read_max", dest="read_max", type="int", default=1000, help="Maximum number of reads in bin to process (chosen randomly) [default 1000]")
parser.add_option("-b", "--bin_num_max", dest="num_max", type="int", default=1000, help="Maximum number of bins to process (chosen randomly) [default 1000]")
parser.add_option("-i", "--iter_max", dest="iter_max", type="int", default=10, help="Maximum number of iterations if alignment does not converge [default 10]")
parser.add_option("-c", "--converge_min", dest="conv_min", type="int", default=3, help="Minimum number of iterations to identify convergence [default 3]")
parser.add_option("-j", "--check_contam", dest="check_contam", action="store_true", default=True, help="Separate results for seqs with adapter contamination [default on]")
parser.add_option("-o", "--minoverlap", dest="MINOVERLAP", type="int", default=10, help="Minimum overlap paramter for identifying adapter contamination [default 10]")
parser.add_option("-e", "--fractionid", dest="MINALIGNID", type="float", default=0.9, help="Minimum alignment id for identifying adapter contamination [default 0.9]")
parser.add_option("-g", "--database", dest="database", default="/home/ubuntu/DRISEE/adapterDB.fna", help="Database fasta of adapter sequences [default /home/ubuntu/DRISEE/adapterDB.fna]")
parser.add_option("-v", "--verbose", dest="verbose", action="store_true", default=False, help="Write runtime summary stats to STDOUT [default off]")
start_time = time.time()
(opts, args) = parser.parse_args()
if len(args) != 2:
parser.error("Incorrect number of arguments")
# check inputs
(in_seq, out_stat) = args
if not (os.path.isfile(in_seq) and os.path.isdir(opts.tmpdir)):
#parser.error("Invalid input files and/or tmp dir")
error_string = ""
if not (os.path.isfile(in_seq)): error_string = ( "Invalid input file (" + in_seq + ")\t;" )
if not (os.path.isdir(opts.tmpdir)): error_string = ( error_string + "Invalid tmp dir (" + opts.tmpdir + ")\n" )
parser.error(error_string)
if opts.processes < 1: opts.processes = 1
if opts.ambig_max < 0: opts.ambig_max = 0
if opts.stdev_multi <=0: opts.stdev_multi = 2
if opts.read_min > opts.read_max:
parser.error("bin_read_min (%d) can not be greater than bin_read_max %d)"%(opts.read_min, opts.out_name))
if opts.read_min < 1: opts.read_min = 1
if opts.read_max < 2: opts.read_max = 2
if opts.num_max < 1: opts.num_max = 1
if opts.iter_max < 1: opts.iter_max = 1
if opts.conv_min < 1: opts.conv_min = 1
if opts.seq_max < 1: opts.seq_max = 2
if opts.prefix < 10: opts.prefix = 10
TMP_DIR = os.path.join(opts.tmpdir, random_str(8)+'.drisee')
LOG_FILE = opts.logfile
ITER_MAX = opts.iter_max
CONV_MIN = opts.conv_min
PREF_LEN = opts.prefix
MINOVERLAP = opts.MINOVERLAP
MINALIGNID = opts.MINALIGNID
DBFILE = opts.database
removeambigtable= string.maketrans('RYWSMKHBVDNrywsmkhbvdn','N'* 22)
adapters = {}
adapters[0] = ""
for seq_record in SeqIO.parse(DBFILE, "fasta"):
adapters[seq_record.description] = string.upper(str(seq_record.seq).translate(removeambigtable))
adapters["%s.R"%seq_record.description] = string.upper(str(seq_record.seq.reverse_complement()).translate(removeambigtable))
os.mkdir(TMP_DIR)
if opts.verbose: sys.stdout.write("Version:\t%s\n"%version)
# seq stats
stats = seq_stats(in_seq, opts.seq_type, opts.verbose)
seqnum = int(stats['sequence_count'])
seqper = float(opts.seq_max) / seqnum
seqmax = 0
if opts.verbose: sys.stdout.write("DRISEE will be run on %d of %d sequences\n"%(min(opts.seq_max, seqnum),seqnum))
# random subselect / length filter
if opts.filter:
if opts.verbose: sys.stdout.write("Filtering with max ambig %d and stddev range x%f ... " %(opts.ambig_max,opts.stdev_multi))
filter_file = os.path.join(TMP_DIR, os.path.basename(in_seq)+'.filter.fasta')
seqmax = filter_seqs(in_seq, filter_file, stats, seqper, opts.ambig_max, opts.stdev_multi, opts.prefix, opts.seq_type)
in_seq = filter_file
opts.seq_type = 'fasta'
if opts.verbose: sys.stdout.write("Done, %s sequences kept\n"%seqmax)
# random subselect / uniquify seqs
else:
if opts.verbose: sys.stdout.write("Making sure seq ids are unique ... ")
out_file = os.path.join(TMP_DIR, os.path.basename(in_seq)+'.uniq.fasta')
out_hdl = open(out_file, 'w')
in_hdl = open(in_seq, 'rU')
try:
for rec in SeqIO.parse(in_hdl, opts.seq_type):
rnd_num = random.random()
if seqper >= rnd_num:
seqmax += 1
out_hdl.write(">%s\n%s\n" %(random_str(), rec.seq))
finally:
in_hdl.close()
out_hdl.close()
in_seq = out_file
opts.seq_type = 'fasta'
if opts.verbose: sys.stdout.write("Done, %s sequences kept\n"%seqmax)
### seq file is always fasta from here on
# dereplication
if not (opts.rep_file and os.path.isfile(opts.rep_file)):
if opts.verbose: sys.stdout.write("Creating replicate bins, prefix size %d bps ... " %opts.prefix)
rep_file = os.path.join(TMP_DIR, os.path.basename(in_seq)+'.derep')
bin_replicate_seqs(in_seq, rep_file, TMP_DIR, opts.prefix, opts.processes)
opts.rep_file = rep_file
if opts.verbose: sys.stdout.write("Done\n")
# index fasta file
if opts.verbose: sys.stdout.write("Creating cdb index ... ")
index_seq = os.path.join(TMP_DIR, os.path.basename(in_seq)+'.cidx')
iout, ierr = run_cmd(['cdbfasta', in_seq, '-o', index_seq])
if opts.logfile and (iout or ierr):
write_file("\n".join([iout, ierr]), opts.logfile, 1)
if opts.verbose: sys.stdout.write("Done\n")
# filter bin set
if opts.verbose: sys.stdout.write("Getting %d random bins with >= %d reads ... " %(opts.num_max,opts.read_min))
bins = filter_bins(opts.rep_file, opts.read_min, opts.num_max)
size = len(bins)
if size == 0:
msg = "No available bins >= %d to process, quiting\n"%opts.read_min
if opts.logfile: write_file(msg, opts.logfile, 1)
if opts.verbose: sys.stdout.write(msg)
write_file('', out_stat)
shutil.rmtree(TMP_DIR)
return 0
if opts.verbose: sys.stdout.write("Done, %s bins found\n"%size)
# check for adapter contamination in one sequence for each md5 in filtered set
if opts.check_contam:
# bins_to_rep_ids will contain a dictionary of each md5 in filtered set to one sequence of the sequence ids
bins_to_rep_ids = {}
# bins_to_seq_count will contain a dictionary of each md5 in filtered set to a count of the number of seqs in that bin
bins_to_seq_count = {}
dhdl = open(opts.rep_file, 'rU')
try:
for line in dhdl:
(bid, sid) = line.split()
if bid in bins:
bins_to_rep_ids[bid] = sid
if bid in bins_to_seq_count:
bins_to_seq_count[bid] += 1
else:
bins_to_seq_count[bid] = 1
finally:
dhdl.close()
# generate sequence file for list of sequence ids
rep_seqs_fasta = os.path.join(TMP_DIR, "rep_seqs.fasta")
get_sub_fasta(bins_to_rep_ids.values(), index_seq, in_seq, rep_seqs_fasta)
contaminated_md5s = get_contaminated_md5_prefixes_from_fasta(rep_seqs_fasta, opts.prefix, adapters)
os.remove(rep_seqs_fasta)
# create trimmed bin fasta files
to_process = []
total_ids = 0
ids = []
curr = ''
dhdl = open(opts.rep_file, 'rU')
if opts.verbose: sys.stdout.write("Creating %d bin files with >= %d reads ..." %(size,opts.read_min))
try:
for line in dhdl:
(bid, sid) = line.split()
if not (bid and sid and (bid in bins)):
continue
if curr == '':
curr = bid
if bid != curr:
if len(ids) > opts.read_max:
ids = random_truncate(ids, opts.read_max)
bin_fasta = os.path.join(TMP_DIR, curr+".fasta")
get_sub_fasta(ids, index_seq, in_seq, bin_fasta) ## seqs truncated to min
if os.path.isfile(bin_fasta):
to_process.append(curr)
total_ids += len(ids)
curr = bid
ids = []
ids.append(sid)
if len(ids) > opts.read_max:
ids = random_truncate(ids, opts.read_max)
bin_fasta = os.path.join(TMP_DIR, curr+".fasta")
get_sub_fasta(ids, index_seq, in_seq, bin_fasta) ## seqs truncated to min
if os.path.isfile(bin_fasta):
to_process.append(curr)
total_ids += len(ids)
finally:
dhdl.close()
if opts.verbose: sys.stdout.write("Done\n")
# process bins
min_proc = 1
if opts.processes > min_proc:
min_proc = opts.processes
if len(to_process) < min_proc:
min_proc = len(to_process)
if opts.verbose: sys.stdout.write("Processing %d bins (%d sequences total) using %d threads ... "%(size,total_ids,min_proc))
pool = Pool(processes=min_proc)
finish = pool.map(process_bin, to_process, 1)
pool.close()
pool.join()
if opts.verbose: sys.stdout.write("Done\n")
# merge results
if len(finish) == 0:
msg = "No bins were processed, quiting\n"
if opts.logfile: write_file(msg, opts.logfile, 1)
if opts.verbose: sys.stdout.write(msg)
write_file('', out_stat)
return 0
bases = []
match = []
error = []
# if check_contam is on, create stats for contaminated and non-contaminated seqs in addition to stats for all seqs
if opts.check_contam:
cbases = []
cmatch = []
cerror = []
ncbases = []
ncmatch = []
ncerror = []
if opts.verbose: sys.stdout.write("Merging scores from %d bins ... "%len(finish))
for bid in finish:
bin_score = os.path.join(TMP_DIR, bid+'.score')
bin_log = os.path.join(TMP_DIR, bid+'.log')
if opts.logfile and os.path.isfile(bin_log):
lhdl = open(bin_log, 'rU')
write_file(lhdl.read(), opts.logfile, 1)
lhdl.close()
if os.path.isfile(bin_score):
shdl = open(bin_score, 'rU')
data = shdl.read().split("\n")
data_copy = list(data)
bases, match, error = process_data(data_copy, match, error)
if opts.check_contam:
if bid in contaminated_md5s:
data_copy = list(data)
cbases, cmatch, cerror = process_data(data_copy, cmatch, cerror)
else:
data_copy = list(data)
ncbases, ncmatch, ncerror = process_data(data_copy, ncmatch, ncerror)
shdl.close()
if opts.verbose: sys.stdout.write("Done\n")
if opts.check_contam:
contam = len(contaminated_md5s)
ncontam = len(finish) - len(contaminated_md5s)
contam_seq_count = 0
ncontam_seq_count = 0
for md5 in bins_to_seq_count:
if md5 in contaminated_md5s:
contam_seq_count += bins_to_seq_count[md5]
elif md5 in finish:
ncontam_seq_count += bins_to_seq_count[md5]
err_score, score_text = create_output(bases, match, error, 0)
write_file(score_text, out_stat)
if opts.check_contam:
if contam > 0:
cerr_score, cscore_text = create_output(cbases, cmatch, cerror, 0)
write_file(cscore_text, out_stat+".contaminated")
if ncontam > 0:
ncerr_score, ncscore_text = create_output(ncbases, ncmatch, ncerror, 0)
write_file(ncscore_text, out_stat+".non_contaminated")
if opts.percent:
_err, per_text = create_output(bases, match, error, 1)
write_file(per_text, out_stat+'.per')
if opts.check_contam:
if contam > 0:
_err, cper_text = create_output(cbases, cmatch, cerror, 1)
write_file(cper_text, out_stat+'.contaminated.per')
if ncontam > 0:
_err, ncper_text = create_output(ncbases, ncmatch, ncerror, 1)
write_file(ncper_text, out_stat+'.non_contaminated.per')
# cleanup
shutil.rmtree(TMP_DIR)
end_time = time.time() - start_time
summary = "\nCompleted in " + str(datetime.timedelta(seconds=end_time)) + "\n"
summary += "Input seqs\t" + str(seqmax) + "\n"
summary += "Processed bins\t" + str(size) + "\n"
summary += "Processed seqs\t" + str(total_ids) + "\n"
summary += "Drisee score\t" + str(err_score) + "\n"
write_file(summary, LOG_FILE, 1)
if opts.verbose: sys.stdout.write(summary)
if opts.check_contam and contam > 0:
contam_summary = "\nContam bins\t" + str(contam) + "\n"
contam_summary += "Contam seqs\t" + str(contam_seq_count) + "\n"
contam_summary += "Drisee score\t" + str(cerr_score) + "\n"
write_file(contam_summary, LOG_FILE, 1)
if opts.verbose: sys.stdout.write(contam_summary)
if opts.check_contam and ncontam > 0:
ncontam_summary = "\nNon-contam bins\t" + str(ncontam) + "\n"
ncontam_summary += "Non-contam seqs\t" + str(ncontam_seq_count) + "\n"
ncontam_summary += "Drisee score\t" + str(ncerr_score) + "\n"
write_file(ncontam_summary, LOG_FILE, 1)
if opts.verbose: sys.stdout.write(ncontam_summary)
return 0
if __name__ == "__main__":
sys.exit(main(sys.argv))