-
Notifications
You must be signed in to change notification settings - Fork 0
/
nusc_dataset.py
244 lines (212 loc) · 11.7 KB
/
nusc_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import time
import numpy as np
import torch
import pickle
from stl_d_lib import *
import utils
from utils import uniform, dict_to_torch
import nusc_api as napi
class MyDataset(torch.utils.data.Dataset):
def __init__(self, nusc, nusc_map_d, meta_list, cache, split, args, ridx=None):
self.nusc = nusc
self.nusc_map_d = nusc_map_d
self.meta_list = meta_list
self.cache = cache
self.split = split
self.args = args
self.meta_d = {traj_i:tokens for traj_i, tokens in self.meta_list}
if args.generate_split_on_the_fly:
self.indices = self.gen_indices_on_the_fly(split, ridx)
else:
self.indices = self.load_split_from_file(split, ridx)
print("%s %d n_samples"%(self.split, len(self.indices)))
self.pickle_cache = {}
def __len__(self):
return len(self.indices)
def load_split_from_file(self, split, ridx):
assert ridx is not None
if self.args.filter_traj is not None:
indices = [[3, 7,]]
if self.args.test_scenes:
indices = [
[0, 13], # straight line some cars parking on the side
[4, 1], #
[5, 1],
[6, 1],
[27, 1],
[49, 1],
[56, 1], # intersection, big truck
[58, 1], # collide, at last
[74, 1], # pure straight,
[80, 1], # straight case, high speed
[106, 1], # dense case
[127, 1], # interesting behavior (0) yield to let other car go
[128, 1], # interesting behavior (1) yield to let other car go
[143, 1], # interesting behavior (2) rear car emerge, accelerate
[177, 1], # simple case, rear car acc
[179, 1], # straight, lots of car, on the side,
[185, 1], # front car, so it needs to keep certain dist
[198, 1], # front car, collide happens
[218, 1], # front car, keep on a left turn lane
[228, 1], # three lanes in the first half, can do highlevel?
[229, 1], # three lanes in many steps, can do highlevel?
[252, 1], # interesting, bypass big car
[300, 1], # complex lanes, full three lines
[509, 1], # rear car acc, and collide
[521, 1], # straight line, bypass another car
[781, 1], # roundabout
]
elif self.args.test_aggressive:
indices = [
[781, 1],
[781, 1],
[781, 1],
]
indices = [(ind[0], ind[1], self.meta_d[ind[0]][ind[1]]) for ind in indices]
else:
if self.args.collect_data:
split_list = ["train", "val"]
else:
split_list = [split]
indices = []
for split_item in split_list:
file_path = "data/%s%s%s_split.txt"%(
"mini_" if self.args.mini else "", "mixed_", split_item)
with open(file_path, "r") as f:
for line in f.readlines():
traj_i, ti, tokens_i = line.strip().split(" ")
if self.args.test_t1:
if int(ti)!=1:
continue
indices.append([int(traj_i), int(ti), tokens_i])
return indices
def gen_indices_on_the_fly(self, split, ridx):
args = self.args
indices = []
for traj_i, tokens in self.meta_list:
for ti in range(1, len(tokens) - self.args.nt + 1):
indices.append((traj_i, ti, tokens[ti]))
torch.manual_seed(args.seed)
rridx = torch.randperm(len(indices))
new_train_len = int(len(indices) * self.args.train_ratio)
if split=="train":
indices = [indices[idxx] for idxx in rridx[:new_train_len]]
else:
indices = [indices[idxx] for idxx in rridx[new_train_len:]]
return indices
def __getitem__(self, idx):
ttt1=time.time()
traj_i, ti, my_token = self.indices[idx]
args = self.args
if self.args.offline:
sample_d = dict_to_torch(self.cache[traj_i][ti], keep_keys=["traj_i", "ti", "len_full"])
else:
sample_d = {"traj_i": traj_i, "ti": ti, "len_full": len(self.meta_d[traj_i])}
nusc = self.nusc
nusc_map_d = self.nusc_map_d
my_scene = nusc.scene[traj_i]
nusc_map = nusc_map_d[nusc.get("log", my_scene["log_token"])["location"]]
ttt2=time.time()
tokens_nt = self.meta_d[traj_i][ti:ti+self.args.nt]
sample_d["ego_traj"] = napi.get_ego_trajectory(nusc, tokens_nt, self.args.dt, return_numpy=True)
ttt3=time.time()
ego_state = torch.from_numpy(sample_d["ego_traj"][0]).float()
sample_d["neighbors"], nearest_ann_tokens = napi.get_nearest_neighbors(nusc, my_token, ego_state, k=self.args.n_neighbors, ret_full=True)
if args.gt_nei:
sample_d["neighbors_traj"], sample_d["neighbors_traj_idx"] = napi.get_neighbor_trajectories(nusc, my_token, tokens_nt, ego_state,
k=self.args.n_neighbors, dt=args.dt, nearest_ann_tokens=nearest_ann_tokens)
ttt4=time.time()
token_name = my_scene["first_sample_token"]
if token_name in self.pickle_cache:
anno_data = self.pickle_cache[token_name]
else:
dataroot=utils.get_data_dir()
with open("%s/%s.pickle"%(os.path.join(dataroot,args.anno_path), token_name), "rb") as ff:
anno_data = pickle.load(ff)
self.pickle_cache[token_name] = anno_data
sample_d["gt_high_level"] = napi.get_high_level_behaviors(nusc, anno_data, ti, args.nt, sample_d, sample_d["ego_traj"])
ttt5=time.time()
curr_id, currlane_wpts, currlane_full, left_id, leftlane_wpts, leftlane_full, \
right_id, rightlane_wpts,rightlane_full = napi.get_centerlines(nusc, nusc_map, \
my_token, ti, sample_d["ego_traj"], anno_data, self.args.n_expands, self.args.n_segs, ret_full=True, highlevel=sample_d["gt_high_level"])
ttt6=time.time()
#################
# consider uturn
uturn_status = -1 # (0, 1 | 2, 3 | 4, 5) for l/r-turn | l/r uturn | valid l/r uturn
# how to detect possible uturn (compare the starting point)
# when the non-curr lane is in current lane's oppo direction (closest point heading diff > np.pi/2)
# consider the left case
if left_id!=-1:
if np.cos(leftlane_wpts[0, -1] - currlane_wpts[0, -1]) < 0: # potential to be a uturn
valid_uturn = napi.is_able_uturn(nusc_map, ego_state, currlane_wpts, leftlane_wpts)
if valid_uturn:
uturn_status = 4
else:
uturn_status = 2
left_id = -1
leftlane_wpts = leftlane_wpts * 0
else:
uturn_status = 0
# consider the right case
if right_id!=-1:
if np.cos(rightlane_wpts[0, -1] - currlane_wpts[0, -1]) < 0: # potential to be a uturn
valid_uturn = napi.is_able_uturn(nusc_map, ego_state, currlane_wpts, rightlane_wpts)
if valid_uturn:
uturn_status = 5
else:
uturn_status = 3
right_id = -1
rightlane_wpts = rightlane_wpts * 0
else:
uturn_status = 1
sample_d["uturn_status"] = torch.tensor([uturn_status])
sample_d["currlane_wpts"] = currlane_wpts
sample_d["leftlane_wpts"] = leftlane_wpts
sample_d["rightlane_wpts"] = rightlane_wpts
sample_d["curr_id"] = torch.tensor([(curr_id!=-1) * 1.0])
sample_d["left_id"] = torch.tensor([(left_id!=-1) * 1.0])
sample_d["right_id"] = torch.tensor([(right_id!=-1) * 1.0])
for key in sample_d:
if isinstance(sample_d[key], np.ndarray):
sample_d[key] = torch.from_numpy(sample_d[key]).float()
ttt7=time.time()
if hasattr(args,"exp_dir_full"):# and args.test==False:
params_path = os.path.join(self.args.exp_dir_full, "models", "params_%05d_%04d.npy"%(traj_i, ti))
params_path2 = os.path.join(self.args.exp_dir_full, "models", "params_%05d_%04d_init.npy"%(traj_i, ti))
if os.path.exists(params_path):
sample_d["params"] = torch.from_numpy(np.load(params_path)).float()
sample_d["params_init"] = torch.from_numpy(np.load(params_path2)).float()
else:
if args.params_load_path is not None:
params_path = os.path.join(self.args.exp_dir_full, "../../" if args.test else "../", args.params_load_path, "models", "params_%05d_%04d.npy"%(traj_i, ti))
params_path2 = os.path.join(self.args.exp_dir_full, "../../" if args.test else "../", args.params_load_path, "models", "params_%05d_%04d_init.npy"%(traj_i, ti))
sample_d["params"] = torch.from_numpy(np.load(params_path)).float()
sample_d["params_init"] = torch.from_numpy(np.load(params_path2)).float()
else:
rand_w0 = uniform(-args.mul_w_max, args.mul_w_max, (args.n_randoms, 3, args.nt)) * 0.1
rand_a0 = uniform(-args.mul_a_max, args.mul_a_max, (args.n_randoms, 3, args.nt))
sample_d["params"] = torch.stack([rand_w0, rand_a0], dim=-1) # (M, 3, nt, 2)
sample_d["params_init"] = sample_d["params"].detach() * 1.0
if args.load_stlp:
params_path_stlp = os.path.join(self.args.exp_dir_full, "../../" if args.test else "../", args.params_load_path, "models", "params_%05d_%04d_stlp.npy"%(traj_i, ti))
sample_d["pre_stlp"] = torch.from_numpy(np.load(params_path_stlp)).float()
params_path_scores = os.path.join(self.args.exp_dir_full, "../../" if args.test else "../", args.params_load_path, "models", "scores_%05d_%04d.npy"%(traj_i, ti))
sample_d["tj_scores_prior"] = torch.from_numpy(np.load(params_path_scores)).float()
'''
params_init torch.Size([64, 3, 20, 2])
params torch.Size([64, 3, 20, 2])
pre_stlp torch.Size([64, 3, 1, 6])
tj_scores_prior torch.Size([64, 3])
'''
original_n_randoms = sample_d["params_init"].shape[0]
if original_n_randoms != self.args.n_randoms:
sample_idx = np.random.choice(list(range(original_n_randoms)), self.args.n_randoms)
sample_d["params_init"] = sample_d["params_init"][sample_idx]
sample_d["params"] = sample_d["params"][sample_idx]
if args.load_stlp:
sample_d["pre_stlp"] = sample_d["pre_stlp"][sample_idx]
sample_d["tj_scores_prior"] = sample_d["tj_scores_prior"][sample_idx]
ttt8=time.time()
# print("%.3f | %.3f %.3f %.3f %.3f %.3f %.3f %.3f" % (ttt8 - ttt1, ttt2-ttt1, ttt3-ttt2, ttt4-ttt3, ttt5-ttt4, ttt6-ttt5, ttt7-ttt6, ttt8-ttt7))
return sample_d