-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnusc_sim.py
801 lines (669 loc) · 38.3 KB
/
nusc_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
import os
import time
import numpy as np
import torch
import matplotlib.pyplot as plt
from stl_d_lib import *
import utils
from utils import uniform, to_np, dict_to_cuda
from queue import Queue
import threading
import pickle
import nusc_api as napi
from nusc_train import generate_parser, get_dataloader, build_stl_cache, get_neighbor_trajs,\
infer_gt_stlp, generate_trajs, dynamics, diffusion_rollout,\
compute_stl_dense, augment_batch_data, compute_shortest_dist_refined, \
pre_prepare_stl_cache, get_diffusion_coeffs, mask_mean
from nusc_viz import plot_agent, get_nusc_color_map
from nusc_model import Net
class NuScenesSim:
def __init__(self, nusc, nusc_map_d, meta_d, args):
self.args = args
self.nusc = nusc
self.nusc_map_d = nusc_map_d
self.meta_d = meta_d
self.epi = 0
self.ti = 0
def pre_check(self, batch):
gt_trajs = batch["ego_traj"][..., :6]
if torch.mean(gt_trajs[:, 3])<1.0:
print("Average speed too slow, skip...")
return False
return True
def reset(self, batch=None):
args = self.args
nusc = self.nusc
nusc_map_d = self.nusc_map_d
if batch is not None:
i = 0
self.traj_i = batch["traj_i"][i].item()
self.base_ti = batch["ti"][i].item()
self.gt_trajs = batch["ego_traj"][..., :6] # contain the heading angle
self.neighbor_trajs = batch["neighbors_traj"]
if args.gt_nei:
self.neighbor_trajs_est = batch["neighbors_traj"]
else:
self.neighbor_trajs_est = batch["neighbor_trajs_aug"]
self.gt_stlp = infer_gt_stlp(batch, self.gt_trajs, args)
self.traj_total_len = len(self.meta_d[self.traj_i])
self.gt_trajs_np = to_np(self.gt_trajs)
self.sim_state = self.gt_trajs[:, 0, :4]
# NuScenes api
if nusc is not None:
self.my_scene = nusc.scene[self.traj_i]
self.nusc_map = nusc_map_d[nusc.get("log", self.my_scene["log_token"])["location"]]
else:
self.my_scene = None
self.nusc_map = None
# statistics
self.bad_cnt = 0
self.collide = False
self.out_of_lane = False
self.backup_cnt = 0
self.sim_length = 0
else:
raise NotImplementedError
# keep batch shape
sample_d = {
"ego_state": self.sim_state,
"neighbors": self.neighbor_trajs[:, :, 0],
"neighbor_trajs": self.neighbor_trajs,
"neighbor_trajs_aug": self.neighbor_trajs_est,
"currlane_wpts": batch["currlane_wpts"],
"leftlane_wpts": batch["leftlane_wpts"],
"rightlane_wpts": batch["rightlane_wpts"],
"curr_id": batch["curr_id"],
"left_id": batch["left_id"],
"right_id": batch["right_id"],
"gt_stlp": self.gt_stlp,
"ego_traj": self.gt_trajs,
"gt_high_level": batch["gt_high_level"],
}
self.bad_cnt = 0
self.epi += 1
self.ti = 0
self.trajs = [self.sim_state * 1.0]
self.figname_list = []
return sample_d
def step(self, u, ego_traj):
args = self.args
nusc = self.nusc
nusc_map_d = self.nusc_map_d
nusc_map = self.nusc_map
D_SAFE = 0.1
# collect the action
# update the ego
new_sim_state = self.sim_state + dynamics(self.sim_state, u) * args.dt
self.trajs.append(new_sim_state * 1.0)
# find the neighbor
sample_d = {"ego_state": new_sim_state[0]}
sample_token = self.meta_d[self.traj_i][self.ti+1]
sample_d["neighbors"], nearest_ann_tokens = napi.get_nearest_neighbors(
nusc, sample_token, new_sim_state[0].cpu(), args.n_neighbors, ret_full=True)
if args.gt_nei:
tokens_nt = self.meta_d[self.traj_i][self.ti+1:self.ti+1+args.nt]
for iii in range(len(tokens_nt), args.nt):
tokens_nt.append("PLACEHOLDER_%02d"%(iii))
sample_d["neighbor_trajs_aug"], sample_d["neighbors_traj_idx"] = napi.get_neighbor_trajectories(
nusc, sample_token, tokens_nt, new_sim_state[0].cpu(),
k=self.args.n_neighbors, dt=args.dt, nearest_ann_tokens=nearest_ann_tokens)
else:
sample_d["neighbor_trajs_aug"] = get_neighbor_trajs(sample_d["neighbors"][None, :], args.nt, args.dt, full=True)[0]
# find the roads
token_name = self.my_scene["first_sample_token"]
dataroot=utils.get_data_dir()
with open("%s/%s.pickle"%(os.path.join(dataroot, args.anno_path), token_name), "rb") as ff:
anno_data = pickle.load(ff)
sample_d["ego_traj"] = to_np(ego_traj)
curr_id, currlane_wpts, currlane_full, left_id, leftlane_wpts, leftlane_full, \
right_id, rightlane_wpts, rightlane_full = napi.get_centerlines(nusc, nusc_map, \
sample_token, self.ti+1, sample_d["ego_traj"], anno_data, args.n_expands, args.n_segs, ret_full=True)
sample_d["currlane_wpts"] = currlane_wpts
sample_d["leftlane_wpts"] = leftlane_wpts
sample_d["rightlane_wpts"] = rightlane_wpts
sample_d["curr_id"] = torch.tensor([(curr_id!=-1) * 1.0])
sample_d["left_id"] = torch.tensor([(left_id!=-1) * 1.0])
sample_d["right_id"] = torch.tensor([(right_id!=-1) * 1.0])
sample_d["gt_traj"] = napi.get_ego_trajectory(nusc, self.meta_d[self.traj_i][self.ti+1: self.ti+1+args.nt], args.dt, return_numpy=True)
sample_d["gt_high_level"] = napi.get_high_level_behaviors(nusc, anno_data, self.ti+1, args.nt, sample_d, sample_d["gt_traj"])
# TODO compute for new gt_stlp
if sample_d["gt_traj"].shape[0] < args.nt:
real_nt = sample_d["gt_traj"].shape[0]
new_traj = np.zeros((args.nt, 6))
new_traj[:real_nt] = sample_d["gt_traj"][:real_nt]
# constant heading and velocity
new_traj[real_nt:args.nt, 2:6] = new_traj[real_nt-1:real_nt, 2:6]
for ttti in range(real_nt, args.nt):
new_traj[ttti, 0] = new_traj[ttti-1, 0] + new_traj[ttti-1, 3] * np.cos(new_traj[ttti-1, 2]) * args.dt
new_traj[ttti, 1] = new_traj[ttti-1, 1] + new_traj[ttti-1, 3] * np.sin(new_traj[ttti-1, 2]) * args.dt
self.gt_trajs_np = sample_d["gt_traj"]
self.gt_trajs = torch.from_numpy(self.gt_trajs_np).float().cuda()
# prepare for new observation
sample_d_unsqueeze = {}
for k in sample_d:
if hasattr(sample_d[k],"device"):
sample_d_unsqueeze[k] = sample_d[k].unsqueeze(0).float()
elif isinstance(sample_d[k], np.ndarray):
sample_d_unsqueeze[k] = torch.from_numpy(sample_d[k][None,:]).float()
else:
sample_d_unsqueeze[k] = torch.tensor([sample_d[k]])
sample_d_unsqueeze = dict_to_cuda(sample_d_unsqueeze)
I_VAL = 0
I_X = 0
# update statistics
collide = False
out_of_lane = False
for nei in sample_d["neighbors"]:
if nei[0]>0.5:
closest_dist = compute_shortest_dist_refined(
new_sim_state[..., I_X:I_X+6].cpu(), nei[None, I_X+1:I_X+6+1], nei[None, I_VAL],
ego_L=args.ego_L, ego_W=args.ego_W, nL=args.refined_nL, nW=args.refined_nW
)
if closest_dist < D_SAFE:
print("Collide!")
collide=True
if self.bad_cnt==0:
self.bad_cnt+=1
break
# if driving out of road
query_layers = nusc_map.layers_on_point(sample_d["ego_state"][0], sample_d["ego_state"][1])
if query_layers["drivable_area"]=="":
print("Drive out of lane!")
out_of_lane=True
if self.bad_cnt==0:
self.bad_cnt+=1
self.ti += 1
self.sim_state = new_sim_state
# viz should be here
info = {
"collide": collide,
"out_of_lane": out_of_lane,
}
done = info["collide"] or info["out_of_lane"] or self.ti>=self.traj_total_len-2
observation = sample_d_unsqueeze
return observation, None, done, info
def render(self, sample_d, plan_traj=None, diffusion_trajs=None, scores_all=None):
PAPER=True
ALPHA=1.0
LW = 3.5
LW_NEI = 3.5
COLOR_AGENT = "#004E9E"
COLOR_NEI = "#C04F15"
COLOR_END = "#fb9a99"
args = self.args
nusc = self.nusc
nusc_map_d = self.nusc_map_d
nusc_map = self.nusc_map
nusc_map.explorer.color_map["lane"] = "#FFFFFF"
color_list=["blue", "green", "red"]
if PAPER:
nusc_map.explorer.color_map = get_nusc_color_map()
del_list = ['road_divider', 'lane_divider', 'traffic_light']
else:
del_list = []
i=0
sim_state_np = to_np(self.sim_state[0])
ego_xy, ego_th, ego_v, ego_L, ego_W = sim_state_np[:2], sim_state_np[2], sim_state_np[3], args.ego_L, args.ego_W
r = 40
my_patch = (ego_xy[0]-r, ego_xy[1]-r, ego_xy[0]+r, ego_xy[1]+r)
fig, ax = nusc_map.render_map_patch(my_patch,
[xx for xx in nusc_map.non_geometric_layers if xx not in ['traffic_light', 'walkway', "ped_crossing", "stop_line"]+del_list],
alpha=0.3, figsize=(8, 8) if args.diffusion else (8, 8), bitmap=None,
render_egoposes_range=(PAPER==False), render_legend=(PAPER==False)
)
bev_handles, bev_labels = ax.get_legend_handles_labels()
cur_token = self.meta_d[self.traj_i][self.ti]
neighbors, ann_tokens = napi.get_neighbors(nusc, cur_token, ret_full=True)
if PAPER==False:
for nei in neighbors:
plot_agent((nei[0], nei[1]), nei[2], nei[4] * 0.9, nei[5] * 0.9, ax, color="gray", alpha=0.5, arrow=(PAPER==False), edgecolor="black")
# plot focus neighbors
neighbors = to_np(sample_d["neighbors"][i])
for ii in range(neighbors.shape[0]):
if neighbors[ii, 0] == 1:
nei = neighbors[ii, 1:]
plot_agent((nei[0], nei[1]), nei[2], nei[4] * 1., nei[5] * 1., ax, color=COLOR_NEI, alpha=0.3, arrow=(PAPER==False), edgecolor="black")
# plot current centerlines
currlane = to_np(sample_d["currlane_wpts"][i].reshape((args.n_segs, 3)))
leftlane = to_np(sample_d["leftlane_wpts"][i].reshape((args.n_segs, 3)))
rightlane = to_np(sample_d["rightlane_wpts"][i].reshape((args.n_segs, 3)))
if PAPER==False:
plt.plot(currlane[:, 0], currlane[:, 1], "blue", linewidth=6, alpha=0.4, label="currlane")
plt.plot(leftlane[:, 0], leftlane[:, 1], "green", linewidth=6, alpha=0.4, label="leftlane")
plt.plot(rightlane[:, 0], rightlane[:, 1], "red", linewidth=6, alpha=0.4, label="rightlane")
# plot the current agent
plot_agent(ego_xy, ego_th, ego_L, ego_W, ax, color=COLOR_AGENT, arrow=(PAPER==False), edgecolor="black")
# plot the currently taken traj
sim_trajs_np = to_np(torch.stack(self.trajs, dim=1))[0, :, :]
plt.plot(sim_trajs_np[:, 0], sim_trajs_np[:, 1], color=COLOR_END if PAPER else "gray", alpha=1.0, linewidth=LW, zorder=1000, label="sim-traj")
# plot the planned trajectory
if plan_traj is not None:
plan_traj_np = to_np(plan_traj)
plt.plot(plan_traj_np[0, :, 0], plan_traj_np[0, :, 1], color="purple", alpha=0.95, linewidth=LW+0.5, zorder=1500, label="plan-traj")
if PAPER==False:
plt.plot(self.gt_trajs_np[:, 0], self.gt_trajs_np[:, 1], color="cyan", alpha=1, linewidth=2, zorder=1200, label="gt-traj")
# plot the diffusion trajectory
if diffusion_trajs is not None:
nn_trajs = diffusion_trajs
nn_trajs_np = to_np(nn_trajs.reshape((-1, args.n_randoms, 3)+nn_trajs.shape[-2:])[i])
scores_argmax_i = torch.max(scores_all.reshape(-1,), dim=0)[1]
max_score = torch.max(scores_all)
for ii in range(args.n_randoms):
for kk in range(3):
if (kk==0 and sample_d["curr_id"].item()==1) or (kk==1 and sample_d["left_id"].item()==1) or (kk==2 and sample_d["right_id"].item()==1):
plt.plot(nn_trajs_np[ii, kk, :, 0], nn_trajs_np[ii, kk, :, 1],
color=color_list[kk], alpha=1 if PAPER else 0.8, linewidth=LW if PAPER else 1,
zorder=800, label="diffusion (mode=%d)"%(kk) if ii==0 else None)
if ii * 3 + kk == scores_argmax_i:
if PAPER==False:
plt.text(nn_trajs_np[ii, kk, -1, 0], nn_trajs_np[ii, kk, -1, 1], "max_s:%.2f"%max_score)
if PAPER:
plt.tick_params(left=False, right=False, labelleft=False, labelbottom = False, bottom = False)
plt.grid(False)
else:
ax.legend(frameon=True, loc='upper right')
plt.axis("scaled")
x_min, y_min, x_max, y_max = my_patch
if PAPER:
x_margin = np.minimum(x_max - x_min / 6, 5)
y_margin = np.minimum(y_max - y_min / 6, 5)
x_margin = y_margin = min(x_margin, y_margin)
else:
x_margin = np.minimum(x_max - x_min / 4, 50)
y_margin = np.minimum(y_max - y_min / 4, 10)
ax.set_xlim(x_min - x_margin, x_max + x_margin)
ax.set_ylim(y_min - y_margin, y_max + y_margin)
figname = "%s/viz_cl_epi%04d_tr%03d_i%03d_t%03d.png"%(args.viz_dir, self.epi, self.traj_i, self.base_ti, self.ti)
utils.plt_save_close(figname)
self.figname_list.append(figname)
def render_trajs(self, args):
return
def render_gif(self):
utils.generate_gif("%s/viz_cl_epi%04d_tr%03d_i%03d.gif"%(args.viz_dir, self.epi, self.traj_i, self.base_ti), duration=100, fs_list=self.figname_list)
def main():
global args
args = utils.setup_exp_and_logger(args, test=args.test)
train_loader, val_loader, nusc, nusc_map_d, meta_list = get_dataloader(args)
stls_cac = build_stl_cache(args)
if all([not args.skip_nusc_load, nusc is None]):
result_queue = Queue()
thread_nusc = threading.Thread(target=napi.get_nuscenes, args=(args.mini, result_queue))
thread_nusc.start()
net = Net(args).cuda()
if args.net_pretrained_path is not None:
net.load_state_dict(torch.load(utils.get_model_path(args.net_pretrained_path)))
if nusc is None and not args.skip_nusc_load:
print("Wait for nuscene loading complete...")
thread_nusc.join()
nusc, nusc_map_d = result_queue.get()
else:
nusc, nusc_map_d = None, None
nusc_sim = NuScenesSim(nusc, nusc_map_d, train_loader.dataset.meta_d, args)
coeffs = get_diffusion_coeffs(args)
loaders = {"train": train_loader, "val": val_loader}
# for mode in ["val"]:
mode = "val"
data_loader = loaders[mode]
# meters
metrics = {"out_of_lane":[], "collide":[], "traj_len":[], "progress":[], "stl_acc":[], "area":[], "t":[]}
for bi, batch in enumerate(data_loader):
# start the close loop testing from here
if nusc_sim.pre_check(batch)==False:
continue
bs = 1
done = False
bad_cnt = 0
batch_cuda = dict_to_cuda(batch)
if args.gt_nei:
batch_cuda["neighbor_trajs_aug"] = batch_cuda["neighbors_traj"]
else:
batch_cuda["neighbor_trajs_aug"] = get_neighbor_trajs(batch_cuda["neighbors"], args.nt, args.dt, full=True)
observation = nusc_sim.reset(batch_cuda)
gt_stlp = observation["gt_stlp"]
stlp_mul = gt_stlp.unsqueeze(1).repeat(1, args.n_randoms*3, 1).reshape(bs*args.n_randoms*3, 6)
for key in metrics:
metrics[key].append([])
traj_len = 0
while done == False:
########################
### get the action ###
########################
# sample lots of gt_stlp
# send to network
# get action, generate trajectory
# send to refine net
# get the action
# send to online refinement
# send to backup control policy
# derive the final policy
ti = nusc_sim.ti
states = observation["ego_state"][:, :4]
dense_states = states.unsqueeze(1).unsqueeze(1).repeat(1, args.n_randoms, 3, 1)
n = bs * args.n_randoms * 3
dense_states_flat = dense_states.reshape(n, dense_states.shape[-1])
highlevel_dense = torch.tensor([0, 1.0, 2.0]).reshape(1, 3, 1).repeat(n//3, 1, 1).reshape(n, 1).cuda().float()
new_batch = {
"ego_traj": observation["ego_traj"],
"neighbors": observation["neighbors"],
"currlane_wpts": observation["currlane_wpts"],
"leftlane_wpts": observation["leftlane_wpts"],
"rightlane_wpts": observation["rightlane_wpts"],
"curr_id": observation["curr_id"],
"left_id": observation["left_id"],
"right_id": observation["right_id"],
"neighbor_trajs_aug": observation["neighbor_trajs_aug"],
"gt_high_level": observation["gt_high_level"],
}
new_batch = augment_batch_data(new_batch, gt_stlp, args, args.n_randoms, stlp_dense=None)
if args.test_aggressive:
if bi==0:
new_batch["stlp_dense"][..., 0:1] = 0.0
new_batch["stlp_dense"][..., 1:2] = 1.0
new_batch["stlp_dense"][..., 2:3] = -1.0
new_batch["stlp_dense"][..., 3:4] = 2.0
new_batch["stlp_dense"][..., 4:5] = 2
new_batch["stlp_dense"][..., 5:6] = 0.2
elif bi==1:
new_batch["stlp_dense"][..., 0:1] = 0.0
new_batch["stlp_dense"][..., 1:2] = 4.0
new_batch["stlp_dense"][..., 2:3] = -1.0
new_batch["stlp_dense"][..., 3:4] = 1.0
new_batch["stlp_dense"][..., 4:5] = 1
new_batch["stlp_dense"][..., 5:6] = 0.2
elif bi==2:
new_batch["stlp_dense"][..., 0:1] = 0.0
new_batch["stlp_dense"][..., 1:2] = 6.0
new_batch["stlp_dense"][..., 2:3] = -1.0
new_batch["stlp_dense"][..., 3:4] = 1.0
new_batch["stlp_dense"][..., 4:5] = 0.2
new_batch["stlp_dense"][..., 5:6] = 0.2
else:
new_batch["stlp_dense"][..., 0:1] = 1.0
new_batch["stlp_dense"][..., 1:2] = 9.0
new_batch["stlp_dense"][..., 2:3] = -3.0 #-3.0
new_batch["stlp_dense"][..., 3:4] = 2.0 #2.0
new_batch["stlp_dense"][..., 4:5] = 0.1
new_batch["stlp_dense"][..., 5:6] = 0.2
tttt1=time.time()
if args.diffusion:
noise = torch.normal(0, 1, (n, args.nt * 2)).cuda().float()
feature = None
guidance_extras = (new_batch, dense_states_flat.detach(), stls_cac) if args.guidance else None
resres = diffusion_rollout(noise, net, new_batch, highlevel_dense, feature, args, coeffs, return_feature=True, guidance_extras=guidance_extras, maximize=True)
if args.diff_full:
nn_controls, feature, nn_controls_list = resres
else:
nn_controls, feature = resres
nn_controls_list = None
elif args.vae:
N = bs * args.n_randoms * 3
rand_w0 = uniform(-args.mul_w_max, args.mul_w_max, (bs, args.n_randoms, 3, args.nt)) * 0.1
rand_a0 = uniform(-args.mul_a_max, args.mul_a_max, (bs, args.n_randoms, 3, args.nt))
new_hint = torch.stack([rand_w0, rand_a0], dim=-1).cuda() # TODO
new_hint = new_hint.reshape(N, args.nt * 2)
new_batch["params_init"] = new_hint
ext = {"highlevel": highlevel_dense}
gaussian_sample = torch.normal(0, 1, (bs * args.n_randoms * 3, args.vae_dim)).to(highlevel_dense.device).float()
results = net(new_batch, ext=ext, n_randoms=args.n_randoms, sample=gaussian_sample)
nn_controls = results[0]
elif args.bc:
N = bs * args.n_randoms * 3
rand_w0 = uniform(-args.mul_w_max, args.mul_w_max, (bs, args.n_randoms, 3, args.nt)) * 0.1
rand_a0 = uniform(-args.mul_a_max, args.mul_a_max, (bs, args.n_randoms, 3, args.nt))
new_hint = torch.stack([rand_w0, rand_a0], dim=-1).cuda() # TODO
new_hint = new_hint.reshape(N, args.nt * 2)
new_batch["params_init"] = new_hint
ext = {"highlevel": highlevel_dense}
nn_controls = net(new_batch, ext=ext, n_randoms=args.n_randoms)
else:
raise NotImplementedError
nn_trajs = generate_trajs(dense_states_flat, nn_controls, args.dt) # (n, nt, 6?)
if (args.diffusion and args.not_use_rect==False and args.multi_cands is not None and args.rect_head)==False:
prev_stl_input = pre_prepare_stl_cache(new_batch, dense_trajs=nn_trajs[:, :-1])
_, prev_scores, prev_acc = compute_stl_dense(prev_stl_input, stls_cac, new_batch["highlevel_dense"], prev_stl_input["dense_valids"], args)
if args.diffusion and args.rect_head and args.not_use_rect==False:
if args.multi_cands is not None:
# cat in the first dim (multi_cands, N, ...)
states_mul = dense_states_flat.repeat(args.multi_cands, 1)
nn_ctrls_mul = torch.cat(nn_controls_list[-args.multi_cands:], dim=0)
nn_trajs_mul = generate_trajs(states_mul, nn_ctrls_mul, args.dt)
prev_stl_input = pre_prepare_stl_cache(new_batch, dense_trajs=nn_trajs_mul[:, :-1], repeat_n=args.multi_cands)
_, scores_hist_list, prev_acc = compute_stl_dense(prev_stl_input, stls_cac,
new_batch["highlevel_dense"].repeat((args.multi_cands, *[1]*(new_batch["highlevel_dense"].dim()-1))),
prev_stl_input["dense_valids"].reshape(-1), args)
controls_hist_list = nn_ctrls_mul.reshape(args.multi_cands, nn_controls_list[-1].shape[0], args.nt, 2)
scores_hist_list = scores_hist_list.reshape(args.multi_cands, nn_controls_list[-1].shape[0])
scores_hist_max, scores_hist_max_i = torch.max(scores_hist_list, dim=0)
controls_hist_max = controls_hist_list[scores_hist_max_i, range(scores_hist_max_i.shape[0])]
nn_controls = controls_hist_max
prev_scores = scores_hist_max
rect_controls = net.rect_forward(feature, highlevel_dense, new_batch["stlp_dense"][:,0], nn_controls.detach(), prev_scores.detach(), extras=nn_controls_list)
if args.n_rolls is not None:
for _ in range(args.n_rolls):
prev_trajs_re = generate_trajs(dense_states_flat, rect_controls, args.dt)
prev_stl_input_re = pre_prepare_stl_cache(new_batch, dense_trajs=prev_trajs_re[:,:-1])
_, prev_scores_re, prev_acc_re = compute_stl_dense(prev_stl_input_re, stls_cac, new_batch["highlevel_dense"], prev_stl_input_re["dense_valids"], args)
rect_controls = net.rect_forward(feature, highlevel_dense, new_batch["stlp_dense"][:,0], rect_controls.detach(), prev_scores_re.detach(), extras=nn_controls_list)
rect_trajs = generate_trajs(dense_states_flat, rect_controls, args.dt) # (n, nt, 6?)
stl_input = pre_prepare_stl_cache(new_batch, dense_trajs=rect_trajs[:, :-1])
_, scores_all, acc = compute_stl_dense(stl_input, stls_cac, new_batch["highlevel_dense"], stl_input["dense_valids"], args)
scores = scores_all
nn_controls = rect_controls
nn_trajs = rect_trajs
max_score_find = torch.max(scores_all.reshape(n//3, 3)[:, 0:1])
if args.lite_refine:
need_refinement = (max_score_find <= 0)
else:
need_refinement = True
if need_refinement:
N = bs * args.n_randoms * 3
if args.refinement:
K = 6
N_ITERS = 50
STL_THRES = 0.0005
LR = 3e-1 #1e-1
lamdas = torch.ones(N, K).cuda().requires_grad_()
optimizer = torch.optim.Adam([lamdas], lr=LR)
states_flat_new = dense_states_flat.detach()
nn_trajs = generate_trajs(states_flat_new, nn_controls, args.dt).reshape(N, args.nt+1, 4)
stl_input = {
"ego_traj": nn_trajs[:, :-1],
"neighbors": new_batch["neighbors_dense"],
"currlane_wpts": new_batch["currlane_wpts_dense"],
"leftlane_wpts": new_batch["leftlane_wpts_dense"],
"rightlane_wpts": new_batch["rightlane_wpts_dense"],
"stlp": new_batch["stlp_dense"],
"dense_valids": new_batch["valids_dense"].reshape(-1, ),
"gt_high_level": new_batch["gt_high_level"],
}
scores_list, scores, acc = compute_stl_dense(stl_input, stls_cac, new_batch["highlevel_dense"], stl_input["dense_valids"], args)
violated = (torch.logical_and(scores<=0, new_batch["valids_dense"].reshape(-1, )>0)).float()
violated = violated.reshape(bs * args.n_randoms * 3, 1, 1)
print("before, acc=%.3f"%(acc))
for opt_i in range(N_ITERS):
ratios = torch.softmax(lamdas, dim=-1)
if K==2:
optim_controls = nn_controls.detach() * ratios[..., 0:1, None] + nn_controls_list[0].detach() * ratios[..., 1:2, None]
elif K==3:
optim_controls = nn_controls.detach() * ratios[..., 0:1, None] + nn_controls_list[80].detach() * ratios[..., 1:2, None]\
+ nn_controls_list[95].detach() * ratios[..., 2:3, None]
elif K==6:
optim_controls = nn_controls.detach() * ratios[..., 0:1, None] + nn_controls_list[0].detach() * ratios[..., 1:2, None]\
+ nn_controls_list[50].detach() * ratios[..., 2:3, None]\
+ nn_controls_list[80].detach() * ratios[..., 3:4, None]\
+ nn_controls_list[90].detach() * ratios[..., 4:5, None]\
+ nn_controls_list[95].detach() * ratios[..., 5:6, None]
optim_controls = nn_controls.detach() * (1-violated.detach()) + violated.detach() * optim_controls
optim_trajs = generate_trajs(states_flat_new.detach(), optim_controls, args.dt)
optim_stl_input = {
"ego_traj": optim_trajs[:, :-1],
"neighbors": new_batch["neighbors_dense"].detach(),
"currlane_wpts": new_batch["currlane_wpts_dense"].detach(),
"leftlane_wpts": new_batch["leftlane_wpts_dense"].detach(),
"rightlane_wpts": new_batch["rightlane_wpts_dense"].detach(),
"stlp": new_batch["stlp_dense"].detach(),
"dense_valids": new_batch["valids_dense"].reshape(-1, ).detach(),
"gt_high_level": new_batch["gt_high_level"].detach(),
}
_, optim_scores, optim_acc = compute_stl_dense(optim_stl_input, stls_cac, new_batch["highlevel_dense"].detach(), optim_stl_input["dense_valids"].detach(), args)
loss = mask_mean(torch.nn.ReLU()(STL_THRES-optim_scores), new_batch["valids_dense"].reshape(-1, ).detach())
# loss = torch.mean(optim_trajs)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("OPTIM [%2d/%2d] loss:%.4f acc:%.4f"%(opt_i, N_ITERS, loss.item(), optim_acc.item()))
print("OPTIM %2d loss:%.4f"%(opt_i, loss.item()))
rect_controls = optim_controls.detach()
rect_trajs = optim_trajs.detach()
scores_all = optim_scores
elif args.raw_refinement:
N_ITERS = 5
STL_THRES = 0.0005
LR = 3e-2 #1e-1
res_controls = torch.zeros(N, args.nt, 2).cuda().requires_grad_()
optimizer = torch.optim.Adam([res_controls], lr=LR)
states_flat_new = dense_states_flat.detach()
violated = (torch.logical_and(scores<=0, new_batch["valids_dense"].reshape(-1, )>0)).float()
violated = violated.reshape(N, 1, 1)
print("before, acc=%.3f"%(acc))
for opt_i in range(N_ITERS):
optim_controls = nn_controls.detach() + violated.detach() * res_controls
optim_trajs = generate_trajs(states_flat_new.detach(), optim_controls, args.dt)
optim_stl_input = {
"ego_traj": optim_trajs[:, :-1],
"neighbors": new_batch["neighbors_dense"].detach(),
"currlane_wpts": new_batch["currlane_wpts_dense"].detach(),
"leftlane_wpts": new_batch["leftlane_wpts_dense"].detach(),
"rightlane_wpts": new_batch["rightlane_wpts_dense"].detach(),
"stlp": new_batch["stlp_dense"].detach(),
"dense_valids": new_batch["valids_dense"].reshape(-1, ).detach(),
"gt_high_level": new_batch["gt_high_level"].detach(),
}
_, optim_scores, optim_acc = compute_stl_dense(optim_stl_input, stls_cac, new_batch["highlevel_dense"].detach(), optim_stl_input["dense_valids"].detach(), args)
stl_loss = mask_mean(torch.nn.ReLU()(STL_THRES-optim_scores), new_batch["valids_dense"].reshape(-1, ).detach())
reg_loss = stl_loss * 0
l2_loss = stl_loss * 0
loss = stl_loss + reg_loss + l2_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
rect_controls = optim_controls.detach()
rect_trajs = optim_trajs.detach()
scores_all = optim_scores
else:
do_nothing=True
ego_controls = rect_controls
ego_trajs = rect_trajs
else:
ego_controls = nn_controls
ego_trajs = nn_trajs
scores_all, acc = prev_scores, prev_acc
stl_input = {k:v for k,v in prev_stl_input.items()}
scores_all = scores_all.reshape(n//3, 3)
scores_all[:, 1:3] = -10000
total_idx = torch.argmax(scores_all)
highest_score = scores_all.flatten()[total_idx]
tttt2=time.time()
sim_ctrl = ego_controls[total_idx].unsqueeze(0)
sim_traj = ego_trajs[total_idx].unsqueeze(0) # (1, 21, 4)
sim_traj = torch.cat([sim_traj, args.ego_L * torch.ones_like(sim_traj[..., 0:1]), args.ego_W * torch.ones_like(sim_traj[..., 0:1])], dim=-1)
if args.backup:
nei_est = observation["neighbor_trajs_aug"]
D_SAFE=0.1
est_collide=False
for ni in range(nei_est.shape[1]):
if nei_est[0,ni,0,0]>0.5:
closest_dist = compute_shortest_dist_refined(
sim_traj[0:1, 2, 0:0+6].cpu(), nei_est[0, ni:ni+1, 2, 0+1:0+7].cpu(), nei_est[0, ni:ni+1, 2, 0].cpu(),
ego_L=args.ego_L, ego_W=args.ego_W, nL=args.refined_nL, nW=args.refined_nW
)
if closest_dist < D_SAFE:
print("detect as unsafe: epi", bi, traj_len)
est_collide=True
u_res = solve_bak(
sim_traj[..., 0:3, 0:0+6], sim_ctrl[..., 0:3, 0:2],
nei_est[0, ni:ni+1,0:3].cpu(),
ego_L=args.ego_L, ego_W=args.ego_W, nL=args.refined_nL, nW=args.refined_nW, dt=args.dt)
u_res = u_res.cuda()
sim_ctrl[:, :2] = sim_ctrl[:, :2] + u_res[None, :]
sim_traj = generate_trajs(sim_traj[:, 0, 0:4], sim_ctrl, dt=args.dt)
sim_traj = torch.cat([sim_traj, args.ego_L * torch.ones_like(sim_traj[..., 0:1]), args.ego_W * torch.ones_like(sim_traj[..., 0:1])], dim=-1)
break
observation, _, done, info = nusc_sim.step(sim_ctrl[0:1, 0, :2], ego_traj=sim_traj[0, :-1])
traj_len += 1
ma_std, ma_vol, ma_std_list, ma_vol_list = napi.measure_diversity(
ego_trajs[..., :-1, :2].reshape(bs, args.n_randoms, 3, args.nt*2),
scores_all.reshape(bs, args.n_randoms, 3),
new_batch["valids_dense"].reshape(bs, args.n_randoms, 3), args.nt)
results = napi.measure_extra_diversity(
ego_trajs[:, :-1].reshape(bs, args.n_randoms, 3, args.nt*4),
scores_all.reshape(bs, args.n_randoms, 3),
new_batch["valids_dense"].reshape(bs, args.n_randoms, 3), args.nt,
nn_controls.reshape(bs, args.n_randoms, 3, args.nt*2),
-args.mul_w_max, args.mul_w_max, -args.mul_a_max, args.mul_a_max,
)
area = results["area"].item()
# metrics
metrics["collide"][-1].append(info["collide"] * 1.0)
metrics["out_of_lane"][-1].append(info["out_of_lane"] * 1.0)
metrics["traj_len"][-1].append(traj_len)
metrics["progress"][-1].append(np.sum(to_np(torch.stack(nusc_sim.trajs, dim=1))[0, :, 3])*args.dt)
metrics["stl_acc"][-1].append(torch.mean((scores_all[:, 0:1]>0).float()).item())
metrics["area"][-1].append(area)
metrics["t"][-1].append(tttt2-tttt1)
if done:
collide_rate = np.mean([xx[-1] for xx in metrics["collide"]])
out_of_lane_rate = np.mean([xx[-1] for xx in metrics["out_of_lane"]])
avg_traj_len = np.mean([xx[-1] for xx in metrics["traj_len"]])
avg_progress = np.mean([xx[-1] for xx in metrics["progress"]])
avg_stl_acc = np.mean(cat_list(metrics["stl_acc"]))
avg_area = np.mean(cat_list(metrics["area"]))
avg_t = np.mean(cat_list(metrics["t"]))
print("### Traj:%04d ### len:%02d || compliance:%.3f area:%.3f progress:%.3f | coll:%.3f ool:%.3f avg_len:%.3f | time:%.3f"%(
bi, traj_len, avg_stl_acc, avg_area, avg_progress,
collide_rate, out_of_lane_rate, avg_traj_len, avg_t
))
if args.no_viz==False:
if args.viz_last==False or done:
nusc_sim.render(observation, sim_traj, ego_trajs, scores_all=scores_all)
if done:
nusc_sim.render_gif()
def solve_bak(ego_traj, ego_ctrls, nei_traj, ego_L, ego_W, nL, nW, dt, D_SAFE=0.1):
# ego_traj (1, 3, 6)
# ego_ctrls (1, 3, 2)
# nei_traj (1, 3, 6)
u_res = torch.zeros(2, 2).cuda().requires_grad_()
niters=500
lr=1e-2
optimizer = torch.optim.Adam([u_res], lr=lr)
for i in range(niters):
# print(ego_traj.shape, ego_ctrls.shape, u_res.shape)
new_traj = generate_trajs(ego_traj[:, 0, 0:4].detach(), ego_ctrls[:, 0:2].detach() + u_res[None,:], args.dt)
closest_dist0 = compute_shortest_dist_refined(
new_traj[0, 1:3, 0:0+4].cpu(), nei_traj[0, 1:3, 0+1:0+7].detach(), ind=1.0,
ego_L=ego_L, ego_W=ego_W, nL=nL, nW=nW
) # (1, 2)
loss_d = torch.mean(torch.nn.ReLU()(D_SAFE*1.01-closest_dist0))
loss_reg = torch.mean(torch.square(u_res))
loss = loss_d + loss_reg
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % 50 == 0:
print("%03d loss:%.4f %.4f"%(i, loss.item(), loss_d.item()))
return u_res
def cat_list(list_of_lists):
final_list=[]
for li in list_of_lists:
final_list = final_list + li
return final_list
if __name__ == "__main__":
args = generate_parser()
# args.anno_path = "../"+args.anno_path
if args.cache_path is not None:
args.offline = True
args.batch_size = 1
t1=time.time()
main()
t2=time.time()
print("Finished in %.3f seconds"%(t2-t1))