-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib_cem.py
238 lines (214 loc) · 9.31 KB
/
lib_cem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import time
import numpy as np
import torch
import matplotlib.pyplot as plt
def dynamics_per_step(x, u):
# next_x = x + u * 0.1
next_x = x * 1.0
next_x[..., 0] = x[..., 0] + u[..., 0] * np.cos(u[..., 1]) * 0.1
next_x[..., 1] = x[..., 1] + u[..., 0] * np.sin(u[..., 1]) * 0.1
return next_x
def dynamics_per_step_torch(x, u):
# next_x = x + u * 0.1
next_x = x * 1.0
next_x[..., 0] = x[..., 0] + u[..., 0] * torch.cos(u[..., 1]) * 0.1
next_x[..., 1] = x[..., 1] + u[..., 0] * torch.sin(u[..., 1]) * 0.1
return next_x
def get_reward(trajs):
# goal = np.array([-2, 1])
wt = (np.linspace(0, np.pi * 2, trajs.shape[1]) + np.arctan2(2, 2))
goal_x = -1 + 2 * np.sqrt(2) * np.cos(wt)
goal_y = 3 + 2 * np.sqrt(2) * np.sin(wt)
goal = np.stack([goal_x, goal_y], axis=-1)
reward = -np.sum(np.linalg.norm(trajs - goal, axis=-1), axis=-1)
return reward
def get_reward_torch(trajs):
# goal = np.array([-2, 1])
wt = torch.linspace(0, np.pi * 2, trajs.shape[1]) + np.arctan2(2, 2)
goal_x = -1 + 2 * np.sqrt(2) * torch.cos(wt)
goal_y = 3 + 2 * np.sqrt(2) * torch.sin(wt)
goal = torch.stack([goal_x, goal_y], dim=-1).to(trajs.device)
reward = -torch.sum(torch.norm(trajs - goal, dim=-1), dim=-1)
return reward
def to_np(x):
return x.detach().cpu().numpy()
def solve_cem_func(x0_init, state_dim, nt, action_dim, num_iters, n_cand, n_elites, policy_type,
dynamics_step_func, reward_func, transform=None, u_clip=None, seed=None, args=None,
extra_dict=None, quiet=False, print_freq=10, device="numpy", visualize=False):
# x0 (state_dim)
assert device in ["numpy", "cpu", "gpu"]
assert x0_init.shape[0] == state_dim and len(x0_init.shape)==1
assert policy_type in ["direct", "wx+b"] or policy_type.startswith("mlp")
assert torch.is_tensor(x0_init)==(device!="numpy")
if u_clip is not None:
u_min = u_clip[0]
u_max = u_clip[1]
assert torch.is_tensor(u_min)==(device!="numpy")
assert torch.is_tensor(u_max)==(device!="numpy")
if device=="numpy":
x0_init = np.repeat(x0_init[None, :], n_cand, axis=0)
else:
x0_init = x0_init.repeat([n_cand, 1])
if seed is not None:
np.random.seed(seed)
torch.manual_seed(seed)
params = {}
if device=="numpy":
zeros = np.zeros
ones = np.ones
else:
zeros = torch.zeros
ones = torch.ones
if policy_type == "direct":
params["u"] = {"mean": zeros((nt, action_dim)), "std": ones((nt, action_dim))}
elif policy_type == "wx+b":
params["w"]={"mean": zeros((action_dim, state_dim)), "std": ones((action_dim, state_dim))}
params["b"]={"mean": zeros((action_dim, 1)), "std": ones((action_dim, 1))}
elif policy_type.startswith("mlp"):
try:
dim_list=[state_dim] + [int(xx) for xx in policy_type.split("_")[1:]] + [action_dim]
except Exception as err:
print(err)
print("Unrecognized mlp format: %s, try sth like mlp_64"%(policy_type))
for i in range(len(dim_list) - 1):
params["w%0d"%(i)] = {"mean":zeros((dim_list[i+1], dim_list[i])), "std":ones((dim_list[i+1], dim_list[i]))}
params["b%0d"%(i)] = {"mean":zeros((dim_list[i+1], 1)), "std":ones((dim_list[i+1], 1))}
else:
raise NotImplementedError
if device=="gpu":
params = {k: {"mean": params[k]["mean"].cuda(), "std": params[k]["std"].cuda()} for k in params}
reward_list = []
best_reward = None
info = {"reward":[]}
eps = 1e-5
prev_reward = None
for iter_i in range(num_iters):
# sampling
if device=="numpy":
inst_p = {k: np.random.normal(loc=params[k]["mean"], scale=params[k]["std"], size=[n_cand,]+list(params[k]["mean"].shape)) for k in params}
else:
inst_p = {k: torch.normal(
mean = params[k]["mean"][None, :].repeat([n_cand,] + [1 for xxx in list(params[k]["mean"].shape)]),
std = params[k]["std"][None, :].repeat([n_cand,] + [1 for xxx in list(params[k]["std"].shape)])) for k in params}
if device=="gpu":
inst_p = {k: inst_p[k].cuda() for k in inst_p}
# generate trajectories based on the dynamics
x0 = x0_init
trajs = [x0]
us = []
for ti in range(nt):
if policy_type=="direct":
u = inst_p["u"][:, ti]
elif policy_type=="wx+b":
u = inst_p["w"] @ x0[..., None] + inst_p["b"]
u = u.squeeze(-1)
else:
if device=="numpy":
relu = lambda x: np.maximum(x, 0)
else:
relu = torch.nn.ReLU()
n_layers = len(params)//2
z = x0[..., None]
for layer_i in range(n_layers):
z = inst_p["w%d"%(layer_i)] @ z + inst_p["b%d"%(layer_i)]
if layer_i != n_layers-1:
z = relu(z)
u = z.squeeze(-1)
# clip the control
if u_clip is not None:
if device=="numpy":
u = np.clip(u, u_min, u_max) # TODO need test
else:
u = torch.clip(u, u_min, u_max)
us.append(u)
new_x0 = dynamics_step_func(x0, u)
x0 = new_x0
trajs.append(x0)
if device=="numpy":
trajs = np.stack(trajs, axis=1)
us = np.stack(us, axis=1)
else:
trajs = torch.stack(trajs, axis=1)
us = torch.stack(us, axis=1)
# evaluate the performance
if transform is not None:
trajs_aug = transform(trajs, extra_dict)
else:
trajs_aug = trajs
reward = reward_func(trajs_aug) # should be in (N,)
# pick the elite and do updates
if device=="numpy":
idx = np.argsort(-reward)[:n_elites]
else:
idx = torch.argsort(-reward)[:n_elites]
for k in params:
if device=="numpy":
params[k]["mean"] = np.mean(inst_p[k][idx], axis=0)
params[k]["std"] = np.clip(np.std(inst_p[k][idx], axis=0), a_min=0.01, a_max=None)
else:
params[k]["mean"] = torch.mean(inst_p[k][idx], dim=0)
params[k]["std"] = torch.clip(torch.std(inst_p[k][idx], dim=0), min=0.01, max=None)
if device=="numpy":
elite_reward = np.mean(reward[idx])
total_reward = np.mean(reward)
current_best_reward = np.max(reward)
else:
elite_reward = torch.mean(reward[idx]).item()
total_reward = torch.mean(reward).item()
current_best_reward = torch.max(reward)
if best_reward is None or current_best_reward > best_reward:
best_at = iter_i
best_reward = current_best_reward
info["best_reward"] = best_reward
u_best = us[idx[0]]
stop_criterion = prev_reward is not None and abs(prev_reward-elite_reward)<=eps
if not quiet:
if iter_i % (num_iters // print_freq) == 0 or iter_i in [0, num_iters-1] or stop_criterion:
print("CEM-iter [%04d/%04d] best_r:%.3f elite_r:%.3f total_r:%.3f best_elite_r:%.3f@[%04d]"%(
iter_i, num_iters, best_reward, elite_reward, total_reward, best_reward, best_at
))
if visualize:
u_mean = us[0]
if device=="numpy":
for ii in range(idx.shape[0]):
plt.plot(trajs[idx[ii],:,0], trajs[idx[ii],:,1], color="blue", alpha=0.3)
else:
for ii in range(idx.shape[0]):
plt.plot(to_np(trajs[idx[ii],:,0]), to_np(trajs[idx[ii],:,1]), color="blue", alpha=0.3)
plt.axis("scaled")
plt.xlim(-6, 6)
plt.ylim(-6, 6)
plt.savefig("viz_cem/cem_iter%03d.png"%(iter_i))
plt.close()
info["reward"].append(elite_reward)
# corner case, early stop ....
if stop_criterion:
break
prev_reward = elite_reward
return u_best, params, info
def main():
os.makedirs("viz_cem",exist_ok=True)
x0 = torch.from_numpy(np.array([1, 5])).float().cuda()
u_min = torch.from_numpy(np.array([-3, -3])).float().cuda()
u_max = torch.from_numpy(np.array([3, 3])).float().cuda()
u, params, info = solve_cem_func(
x0_init=x0, state_dim=2, nt=20, action_dim=2, num_iters=5000, n_cand=1000, n_elites=100,
policy_type="direct",
# policy_type="wx+b",
# policy_type="mlp_16",
dynamics_step_func=dynamics_per_step_torch, reward_func=get_reward_torch, transform=None, u_clip=(u_min, u_max), seed=1007, args=None, extra_dict=None, quiet=False, print_freq=10,
device="gpu",
visualize=True,
)
for ti in range(u.shape[0]):
print(ti, u[ti])
reward_list = info["reward"]
plt.plot(range(len(reward_list)), reward_list)
plt.savefig("viz_cem/cem_reward_curve.png", bbox_inches='tight', pad_inches=0.1)
plt.close()
if __name__ == "__main__":
t1=time.time()
main()
t2=time.time()
print("Finished in %.3f seconds"%(t2 - t1))