generated from MITLLRacecar/Student
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathar_solver.py
158 lines (131 loc) · 5.53 KB
/
ar_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
isSimulation = True
import math
import copy
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
import ipywidgets as widgets
import statistics
from nptyping import NDArray
from typing import Any, Tuple, List, Optional
from enum import Enum
# Import Racecar library
import sys
sys.path.append("../../library")
import racecar_core
import racecar_utils as rc_utils
rc = racecar_core.create_racecar(True)
potential_colors = [
((10, 50, 50), (20, 255, 255),'ORANGE'),
((100, 150, 50), (110, 255, 255),'BLUE'),
((40, 50, 50), (80, 255, 255),'GREEN'), # The HSV range for the color green
((170, 50, 50), (10, 255, 255),'RED'),
((110,59,50), (165,255,255),'PURPLE')
]
class Orientation(Enum):
UP = 0
LEFT = 1
DOWN = 2
RIGHT = 3
class ARMarker:
def __init__(self, marker_id, marker_corners):
# TODO: Copy implementation from your previous ARMarker class
self.__id = marker_id
self.__corners = marker_corners
if self.__corners[0][1] > self.__corners[2][1]:
if self.__corners[0][0] > self.__corners[2][0]:
self.__orientation = Orientation.DOWN
else:
self.__orientation = Orientation.RIGHT
else:
if self.__corners[0][0] > self.__corners[2][0]:
self.__orientation = Orientation.LEFT
else:
self.__orientation = Orientation.UP
# Create fields to store the detected color and the area of that color's contour
self.__color = "not detected"
self.__color_area = 0
def detect_colors(self, image, potential_colors):
# TODO: Copy the code we wrote previously to crop the image to the area around the ARMarker
marker_top, marker_left = self.__corners[self.__orientation.value]
marker_bottom, marker_right = self.__corners[(self.__orientation.value + 2) % 4]
half_marker_height = (marker_bottom - marker_top) // 2
half_marker_width = (marker_right - marker_left) // 2
crop_top_left = (
max(0, marker_top - half_marker_height),
max(0, marker_left - half_marker_width),
)
crop_bottom_right = (
min(image.shape[0], marker_bottom + half_marker_height) + 1,
min(image.shape[1], marker_right + half_marker_width) + 1,
)
cropped_image = rc_utils.crop(image, crop_top_left, crop_bottom_right)
# TODO: Copy the code we wrote previously to search for the colors in potential_colors
for (hsv_lower, hsv_upper, color_name) in potential_colors:
contours = rc_utils.find_contours(cropped_image, hsv_lower, hsv_upper)
largest_contour = rc_utils.get_largest_contour(contours)
if largest_contour is not None:
contour_area = rc_utils.get_contour_area(largest_contour)
if contour_area > self.__color_area:
self.__color_area = contour_area
self.__color = color_name
def get_id(self):
# TODO: Copy implementation from your previous ARMarker class
return self.__id
def get_corners(self):
# TODO: Copy implementation from your previous ARMarker class
return self.__corners
def get_orientation(self):
# TODO: Copy implementation from your previous ARMarker class
return self.__orientation
def get_color(self):
# TODO: Return the detected color
return self.__color
def __str__(self):
# TODO: Update __str__ to include the ID, corners, and orientation, and color
return f"ID: {self.__id}\nCorners: {self.__corners}\nOrientation: {self.__orientation}\nColor: {self.__color}"
def get_ar_markers(image):
# Gather raw AR marker data from ArUco
aruco_data = cv.aruco.detectMarkers(
image,
cv.aruco.Dictionary_get(cv.aruco.DICT_6X6_250),
parameters=cv.aruco.DetectorParameters_create()
)
# A list of ARMarker objects representing the AR markers found in aruco_data
markers = []
for i in range(len(aruco_data[0])):
# TODO: For each marker in aruco_data, extract the corners and id, change the corners into (row, col) format,
# and create an ARMarker object with this data (see section 3.1)
corners = aruco_data[0][i][0].astype(np.int32)
for j in range(len(corners)):
col = corners[j][0]
corners[j][0] = corners[j][1]
corners[j][1] = col
marker_id = aruco_data[1][i][0]
# TODO: Add the new marker to markers
markers.append(ARMarker(marker_id, corners))
markers[-1].detect_colors(image, potential_colors)
return markers
def ar_info(marker: ARMarker):
if marker.get_color() == 'PURPLE' or marker.get_color() == 'ORANGE':
return f'{marker.get_color()} Lane Following'
if marker.get_id() == 0:
return 'Turn Left'
if marker.get_id() == 1:
return 'Turn Right'
if marker.get_id() == 199:
if marker.get_orientation() == Orientation.LEFT:
return 'Turn Left'
if marker.get_orientation() == Orientation.RIGHT:
return 'Turn Right'
if marker.get_id() == 2:
if marker.get_color() == 'not detected':
return 'Slalom'
return f'Follow {marker.get_color()} line'
def get_markers_info():
image = rc.camera.get_color_image_async()
markers = get_ar_markers(image)
msgs = []
for i in markers:
msgs.append(ar_info(i))
return msgs