diff --git a/README.md b/README.md index 578181a..06c5233 100644 --- a/README.md +++ b/README.md @@ -261,13 +261,13 @@ Matrices encoding the effect of a quantum gate: | Hadamard, H | `Sim.H` | 1 | 2x2 | | | Pauli X, NOT | `Sim.X` | 1 | 2x2 | bit flip
X = -iYZ = iZY | | Pauli Y | `Sim.Y` | 1 | 2x2 | Y = iXZ = -iZX | -| Pauli Z, Phase($\pi$) | `Sim.Z` or `Phase(180)` | 1 | 2x2 | phase flip
Z = -iXY = iYX
Z = Phase(180) | +| Pauli Z, Phase($\pi$) | `Sim.Z` or `Sim.Phase(180)` | 1 | 2x2 | phase flip
Z = -iXY = iYX
Z = Phase(180) | | $\sqrt{X}$, SX, $\sqrt{NOT}$, V | `Sim.SX` | 1 | 2x2 | The name SX means 'Square root of X' | | $\sqrt{Y}$, SY | `Sim.SY` | 1 | 2x2 | | -| $\sqrt{Z}$, SZ, Phase($\pi/2$), S | `Sim.SZ` or `Phase(90)` | 1 | 2x2 | SZ = Phase(90) | +| $\sqrt{Z}$, SZ, Phase($\pi/2$), S | `Sim.SZ` or `Sim.Phase(90)` | 1 | 2x2 | SZ = Phase(90) | | $\sqrt[4]{X}$ | `Sim.SSX` | 1 | 2x2 | The name SSX means 'Square root of Square root of X' | | $\sqrt[4]{Y}$ | `Sim.SSY` | 1 | 2x2 | | -| $\sqrt[4]{Z}$, Phase($\pi/4$), T, $\pi/8$ | `Sim.SSZ` or `Phase(45)` | 1 | 2x2 | SSZ = Phase(45) | +| $\sqrt[4]{Z}$, Phase($\pi/4$), T, $\pi/8$ | `Sim.SSZ` or `Sim.Phase(45)` | 1 | 2x2 | SSZ = Phase(45) | | global phase shift | `Sim.GlobalPhase (angleInDegrees)` | 1 | 2x2 | can be placed on any qubit, causes an equal phase shift in all amplitudes | | phase shift | `Sim.Phase (angleInDegrees)` | 1 | 2x2 | Z = Phase(180) | | $R_x$ | `Sim.RX (angleInDegrees)` | 1 | 2x2 | | @@ -304,7 +304,7 @@ Pauli Y, `Sim.Y` \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} ``` -Pauli Z, Phase($\pi$), `Sim.Z`, `Phase(180)` +Pauli Z, Phase($\pi$), `Sim.Z`, `Sim.Phase(180)` ```math \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} ``` @@ -319,7 +319,7 @@ $\sqrt{Y}$, SY, `Sim.SY` \frac{1}{2} \begin{bmatrix} 1+i & -1-i \\ 1+i & 1+i \end{bmatrix} ``` -$\sqrt{Z}$, SZ, Phase($\pi/2$), S, `Sim.SZ`, `Phase(90)` +$\sqrt{Z}$, SZ, Phase($\pi/2$), S, `Sim.SZ`, `Sim.Phase(90)` ```math \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} ``` @@ -336,7 +336,7 @@ $\sqrt[4]{Y}$, `Sim.SSY` = \begin{bmatrix} (2+\sqrt{2})/4 + i/(2 \sqrt{2}) & -1/(2 \sqrt{2})-i (2-\sqrt{2})/4 \\ 1/(2 \sqrt{2})+i (2-\sqrt{2})/4 & (2+\sqrt{2})/4 + i/(2 \sqrt{2}) \end{bmatrix} ``` -$\sqrt[4]{Z}$, Phase($\pi/4$), T, $\pi/8$, `Sim.SSZ`, `Phase(45)` +$\sqrt[4]{Z}$, Phase($\pi/4$), T, $\pi/8$, `Sim.SSZ`, `Sim.Phase(45)` ```math \begin{bmatrix} 1 & 0 \\ 0 & e^{i \pi/4} \end{bmatrix} ```