-
Notifications
You must be signed in to change notification settings - Fork 13
/
bigram.py
113 lines (91 loc) · 4.89 KB
/
bigram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
import torch.nn as nn
from torch.nn import functional as F
# Hyperparameters
train_test_split = 0.9
batch_size = 32
block_size = 8
max_iters = 3000
eval_interval = 300
learning_rate = 1e-2
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
torch.manual_seed(1337)
# Load Tiny Shakespeare dataset
# (also refer to Andrej Karpathy's blog: http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
with open('tiny-shakespeare.txt', 'r') as f:
text = f.read()
# Find all unique characters in the text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# Create mappings from characters to indices and vice versa
stoi = { ch: i for i, ch in enumerate(chars) }
itos = { i: ch for i, ch in enumerate(chars) }
encode = lambda s: [stoi[ch] for ch in s] # Take a string, return a list of indices/integers
decode = lambda l: ''.join([itos[i] for i in l]) # Take a list of indices/integers, return a string
# Train and validation data
data = torch.tensor(encode(text), dtype=torch.long).to(device)
n = int(train_test_split * len(data)) # First n characters are for training
train_data = data[:n]
val_data = data[n:]
# Data Loading
def get_batch(split, batch_size):
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,)) # Generates a tensor of shape (batch_size,) with random sequence start indices between 0 and len(data) - block_size
x = torch.stack([data[i:i+block_size] for i in ix]) # stack all (ix holds batch_size many) sequences of this batch row-wise on top of each other to form a tensor
y = torch.stack([data[i+1:i+block_size+1] for i in ix]) # same as x but shifted by one token
x, y = x.to(device), y.to(device)
return x, y # x is batch_size x block_size, y is batch_size x block_size
@torch.no_grad() # Disable gradient calculation for this function
def evaluate_loss():
out = {}
model.eval() # Set model to evaluation mode
for split in ['train', 'val']:
losses = torch.zeros(eval_iters, device=device)
for k in range(eval_iters):
X, Y = get_batch(split, batch_size)
_, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train() # Set model back to training mode
return out
class BigramLM(nn.Module):
def __init__(self, vocab_size):
super().__init__()
self.embed = nn.Embedding(vocab_size, vocab_size) # Embedding the vocabulary, each individual token is represented by a vector of size vocab_size
def forward(self, idx, targets=None):
logits = self.embed(idx) # Embed the input indices, shape is now (batch_size, block_size, vocab_size) (B, T, C)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C) # Transpose logits to (B, C, T) (B=batch_size, T=block_size, C=vocab_size)
targets = targets.view(B*T) # Transpose targets to (B, T)
loss = F.cross_entropy(logits, targets) # Calculating cross entropy loss across all tokens in the batch
return logits, loss
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
logits, _ = self(idx) # Forward pass (this is the forward function) with the current sequence of characters idx, results in (B, T, C)
logits = logits[:, -1, :] # Focus on the last token from the logits (B, T, C) -> (B, C)
probs = F.softmax(logits, dim=-1) # Calculate the set of probabilities for the next token based on this last token, results in (B, C)
idx_next = torch.multinomial(probs, num_samples=1) # Sample the next token (B, 1), the token with the highest probability is sampled most likely
idx = torch.cat((idx, idx_next), dim=1) # Add the new token to the sequence (B, T+1) for the next iteration
return idx
# Model
model = BigramLM(vocab_size)
m = model.to(device) # Move model parameters to device
# Create PyTorch Optimizer
opt = torch.optim.AdamW(model.parameters(), lr=learning_rate)
# Training
for iter in range(max_iters):
xb, yb = get_batch('train', batch_size) # Get batch
logits, loss = m(xb, yb) # Forward pass
loss.backward() # Backward pass
opt.step() # Update parameters
opt.zero_grad(set_to_none=True) # Reset gradients
if iter % eval_interval == 0:
losses = evaluate_loss()
print(f'Iter {iter:4d} | Train Loss {losses["train"]:6.4f} | Val Loss {losses["val"]:6.4f}')
# Generate text from the model
context = torch.zeros((1, 1), dtype=torch.long, device=device) # Start with a zero context
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))