-
Notifications
You must be signed in to change notification settings - Fork 0
/
bootstrapped_dqn_agent.py
92 lines (72 loc) · 3.83 KB
/
bootstrapped_dqn_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Union
import numpy as np
from rl_coach.agents.dqn_agent import DQNNetworkParameters, DQNAgentParameters
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
from rl_coach.exploration_policies.bootstrapped import BootstrappedParameters
class BootstrappedDQNNetworkParameters(DQNNetworkParameters):
def __init__(self):
super().__init__()
self.heads_parameters[0].num_output_head_copies = 10
self.heads_parameters[0].rescale_gradient_from_head_by_factor = 1.0/self.heads_parameters[0].num_output_head_copies
class BootstrappedDQNAgentParameters(DQNAgentParameters):
def __init__(self):
super().__init__()
self.exploration = BootstrappedParameters()
self.network_wrappers = {"main": BootstrappedDQNNetworkParameters()}
@property
def path(self):
return 'rl_coach.agents.bootstrapped_dqn_agent:BootstrappedDQNAgent'
# Bootstrapped DQN - https://arxiv.org/pdf/1602.04621.pdf
class BootstrappedDQNAgent(ValueOptimizationAgent):
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
super().__init__(agent_parameters, parent)
@property
def is_on_policy(self) -> bool:
return False
def reset_internal_state(self):
super().reset_internal_state()
self.exploration_policy.select_head()
def learn_from_batch(self, batch):
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
next_states_online_values = self.networks['main'].online_network.predict(batch.next_states(network_keys))
result = self.networks['main'].parallel_prediction([
(self.networks['main'].target_network, batch.next_states(network_keys)),
(self.networks['main'].online_network, batch.states(network_keys))
])
q_st_plus_1 = result[:self.ap.exploration.architecture_num_q_heads]
TD_targets = result[self.ap.exploration.architecture_num_q_heads:]
# add Q value samples for logging
# initialize with the current prediction so that we will
# only update the action that we have actually done in this transition
for i in range(batch.size):
mask = batch[i].info['mask']
for head_idx in range(self.ap.exploration.architecture_num_q_heads):
self.q_values.add_sample(TD_targets[head_idx])
if mask[head_idx] == 1:
selected_action = np.argmax(next_states_online_values[head_idx][i], 0)
TD_targets[head_idx][i, batch.actions()[i]] = \
batch.rewards()[i] + (1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount \
* q_st_plus_1[head_idx][i][selected_action]
result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets)
total_loss, losses, unclipped_grads = result[:3]
return total_loss, losses, unclipped_grads
def observe(self, env_response):
mask = np.random.binomial(1, self.ap.exploration.bootstrapped_data_sharing_probability,
self.ap.exploration.architecture_num_q_heads)
env_response.info['mask'] = mask
return super().observe(env_response)