-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
393 lines (296 loc) · 14.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 17 21:31:29 2019
@author: lawle
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import argparse
import nsml
import numpy as np
import tensorflow as tf
import triplet_loss
import pickle
from nsml import DATASET_PATH
from keras.preprocessing import image
from keras.applications.resnet50 import ResNet50
from keras import regularizers
from keras.models import Model
from keras.layers import *
from keras.optimizers import Adam
from keras import backend as K
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.resnet50 import preprocess_input
from Pooling import GeMPooling2D
## for using re-ranking, import below
#from re-ranking import *
#from sklearn.metrics.pairwise import euclidean_distances
#from diffussion import *
#---------------------------------------------------------------------------------
K_ = 50
QUERYKNN = 5
R = 2000
alpha = 0.9
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
K.set_session(sess)
#---------------------------------------------------------------------------------
def bind_model(model):
def save(dir_name):
os.makedirs(dir_name, exist_ok=True)
model.save_weights(os.path.join(dir_name, 'model'))
print('model saved!')
def load(file_path):
model.load_weights(file_path)
print('model loaded!')
def infer(queries, db):
# Query 개수: 18,027
# Reference(DB) 개수: 36,748
# Total (query + reference): 54,775
retrieval_results = {}
bsize = 200
print('Total # of batches :', int(len(queries)/bsize)+1)
db_output = ["./db_query_squared_7.pkl","./db_reference_squared_7.pkl"]
# get representation vectors of query and reference images
if os.path.exists(db_output[0]):
print("exists")
with open(db_output[0], 'rb') as f:
query_vecs = pickle.load(f)
with open(db_output[1], 'rb') as f:
reference_vecs = pickle.load(f)
else:
print("non-exists")
# reference images vector calculate
for batch_r in range(int(len(db)/bsize) + 1):
references_b, reference_img = preprocess_query(db, batch_r, bsize)
references_b = np.asarray(references_b)
reference_img = np.asarray(reference_img)
reference_img = reference_img.astype('float32')
# inference
# caching db output, db inference
reference_vecs_b = model.predict([reference_img,reference_img,reference_img])
if (batch_r == 0):
reference_vecs = reference_vecs_b
references = references_b
else:
reference_vecs = np.concatenate((reference_vecs,reference_vecs_b), axis=0)
references = np.concatenate((references, references_b))
print(batch_r, 'th ref batch complete.')
# query images vector calculate
for batch in range(int(len(queries)/bsize) + 1):
queries_b, query_img = preprocess_query(queries, batch, bsize)
queries_b = np.asarray(queries_b)
query_img = np.asarray(query_img)
# print(batch, 'th query batch shape: ', query_img.shape)
query_img = query_img.astype('float32')
# inference
# print('inference start')
query_vecs_b = model.predict([query_img,query_img,query_img])
if (batch == 0):
query_vecs = query_vecs_b
queries_all = queries_b
else:
query_vecs = np.concatenate((query_vecs,query_vecs_b), axis=0)
queries_all = np.concatenate((queries_all, queries_b))
print(batch, 'th query batch complete.')
with open(db_output[0], 'wb') as f:
pickle.dump(query_vecs,f)
with open(db_output[1], 'wb') as f:
pickle.dump(reference_vecs,f)
#---------------------------------------------------------------------------------
# X = reference_vecs
# Q = query_vecs
# FSR (Fast Spectral Ranking)
# sim = np.dot(Q,X.T)
# del Q
# qsim = sim_kernel(sim)
#
# del sim
#
# sortidxs = np.argsort(-qsim, axis = 1)
# for i in range(len(qsim)):
# qsim[i,sortidxs[i,QUERYKNN:]] = 0
#
# qsim = sim_kernel(qsim)
# A = np.dot(X,X.T)
# del X
# W = sim_kernel(A)
# del A
# W = topK_W(W, K_)
# Wn = normalize_connection_graph(W)
# del W
#
# indices = fsr_rankR(qsim, Wn, alpha, R)
#---------------------------------------------------------------------------------
# re_ranking
# q_g_dist = euclidean_distances(Q,X)
# q_q_dist = euclidean_distances(Q,Q)
# g_g_dist = euclidean_distances(X,X)
#
# del X
# del Q
#
# distances = re_ranking(q_g_dist, q_q_dist, g_g_dist, k1=20, k2=6)
# indices = np.argsort(distances, axis=1)
#---------------------------------------------------------------------------------
# average query expansion
distances = np.dot(query_vecs,reference_vecs.T)
indices = np.argsort(-distances, axis=1)
for expand_epoch in range(1):
query_vecs = np.vstack([np.vstack((query_vecs[i], reference_vecs[indices[i, :5]])).mean(axis=0) for i in range(len(query_vecs))])
distances = np.dot(query_vecs,reference_vecs.T)
indices = np.argsort(-distances, axis=1)
for (i, query) in enumerate(queries_all):
query = query.split('/')[-1].split('.')[0]
ranked_list = [references[k].split('/')[-1].split('.')[0] for k in indices[i]]
ranked_list = ranked_list[:1000]
retrieval_results[query] = ranked_list
print('done')
return list(zip(range(len(retrieval_results)), retrieval_results.items()))
# DONOTCHANGE: They are reserved for nsml
nsml.bind(save=save, load=load, infer=infer)
#---------------------------------------------------------------------------------
# data preprocess
def preprocess_query(queries, index, size):
query_img = []
img_size = (224, 224)
batch_queries = queries[size*index : min(size*(index+1), len(queries))]
for img_path in batch_queries:
img = image.load_img(img_path, target_size=img_size)
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = preprocess_input(img)
query_img.append(img[0])
return batch_queries, query_img
#---------------------------------------------------------------------------------
# backbone model: ResNet50 with Generalized Mean Pooling
def convnet_model_():
vgg_model = ResNet50(weights="imagenet", include_top=False, input_shape = (224,224,3))
x = vgg_model.output
x = GeMPooling2D()(x)
x = Lambda(lambda x: K.l2_normalize(x,axis=1))(x)
'''
x = Dense(512, name='pca',kernel_initializer='identity',
bias_initializer='zeros')(x)
x = Lambda(lambda x: K.l2_normalize(x, axis=1), name='pca_norm')(x)
'''
convnet_model = Model(inputs=vgg_model.input, outputs=x)
return convnet_model
#---------------------------------------------------------------------------------
def deep_rank_model():
convnet_model = convnet_model_()
first_input = Input(shape=(224,224,3))
first_avg = AveragePooling2D(pool_size=(4,4), padding = 'same')(first_input)
first_conv = Conv2D(96, kernel_size=(8, 8),strides=(4,4), padding='same',kernel_regularizer=regularizers.l2(0.01))(first_avg)
first_max = MaxPool2D(pool_size=(7,7),strides = (4,4),padding='same')(first_conv)
first_max = Flatten()(first_max)
first_max = Lambda(lambda x: K.l2_normalize(x,axis=1))(first_max)
second_input = Input(shape=(224,224,3))
second_avg = AveragePooling2D(pool_size=(8,8), padding = 'same')(second_input)
second_conv = Conv2D(96, kernel_size=(8, 8),strides=(4,4), padding='same', kernel_regularizer=regularizers.l2(0.01))(second_avg)
second_max = MaxPool2D(pool_size=(3,3),strides = (2,2),padding='same')(second_conv)
second_max = Flatten()(second_max)
second_max = Lambda(lambda x: K.l2_normalize(x,axis=1))(second_max)
merge_one = concatenate([first_max, second_max])
merge_two = concatenate([merge_one, convnet_model.output])
emb = Dense(2048)(merge_two)
l2_norm_final = Lambda(lambda x: K.l2_normalize(x,axis=1))(emb)
final_model = Model(inputs=[first_input, second_input, convnet_model.input], outputs=l2_norm_final)
return final_model
#---------------------------------------------------------------------------------
def generator_three_img(gen,dir1,target_size=(224,224), batch_size=32, class_mode="categorical"):
genX1 = gen.flow_from_directory(dir1, target_size = target_size, batch_size=batch_size,
class_mode=class_mode, shuffle = True, seed=7)
while True:
X1i = genX1.next()
label = np.argmax(X1i[1],axis=1)
New_X = preprocess_input(X1i[0])
yield [New_X,New_X,New_X], label
#---------------------------------------------------------------------------------
# randomly generate data consist of three same image
def generator_three_img_sampling(gen,dir1,target_size=(224,224), batch_size=20, class_mode="categorical"):
train_dataset_path = DATASET_PATH + '/train/train_data'
train_class_list = os.listdir(train_dataset_path)
num_class = len(train_class_list)
sub_batch = 5
num_class = int(batch_size/sub_batch)
genX_list = []
for train_class in train_class_list:
genX = gen.flow_from_directory(dir1, classes=[train_class],target_size = target_size, batch_size=sub_batch,
class_mode=class_mode, shuffle = True, seed=7)
genX_list.append(genX)
while True:
class_list = np.random.choice(range(num_class), num_class, replace = False)
for n in range(len(class_list)):
if n == 0:
total_data = genX_list[class_list[n]].next()
img_data = total_data[0]
img_data = preprocess_input(total_data[0])
label_data = np.array([class_list[n] for i in range(len(total_data[0]))])
else:
total_data = genX_list[class_list[n]].next()
img_data = np.concatenate((img_data, total_data[0]))
img_data = preprocess_input(total_data[0])
label_data = np.concatenate((label_data, np.array([class_list[n] for i in range(len(total_data[0]))])))
yield [img_data, img_data, img_data], label_data
#---------------------------------------------------------------------------------
if __name__ == '__main__':
args = argparse.ArgumentParser()
# hyperparameters
args.add_argument('--epochs', type=int, default=10)
args.add_argument('--batch_size', type=int, default=150)
# DONOTCHANGE: They are reserved for nsml
args.add_argument('--mode', type=str, default='train', help='submit일때 해당값이 test로 설정됩니다.')
args.add_argument('--iteration', type=str, default='0', help='fork 명령어를 입력할때의 체크포인트로 설정됩니다. 체크포인트 옵션을 안주면 마지막 wall time 의 model 을 가져옵니다.')
args.add_argument('--pause', type=int, default=0, help='model 을 load 할때 1로 설정됩니다.')
config = args.parse_args()
# training parameters
nb_epoch = config.epochs
batch_size = config.batch_size
num_classes = 1383
num_train_data = 73551
input_shape = (224, 224, 3) # input image shape
deep_rank_model_ = deep_rank_model()
deep_rank_model_.summary()
bind_model(deep_rank_model_)
if config.pause:
nsml.paused(scope=locals())
bTrainmode = False
if config.mode == 'train':
bTrainmode = True
# Saved model load
# nsml.load(checkpoint='0', session='team_52/ir_ph2/428')
# nsml.save('saved')
# exit()
# Initiate RMSprop optimizer
deep_rank_model_.compile(loss=triplet_loss.batch_hard_triplet_loss, optimizer=Adam(lr=0.0001))
# Load data
print('dataset path', DATASET_PATH)
##nsml.load(checkpoint='1', session='team_52/ir_ph2/424')
train_dataset_path = DATASET_PATH + '/train/train_data'
train_class_list = os.listdir(train_dataset_path)
if nsml.IS_ON_NSML:
# Caching file
train_datagen = ImageDataGenerator(shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True,
width_shift_range=0.2,
height_shift_range=0.2,
rotation_range=30,
fill_mode="nearest")
training_set = generator_three_img_sampling(train_datagen, train_dataset_path, target_size= input_shape[:2],
batch_size = batch_size, class_mode = 'categorical')
steps_per_epoch = int(num_train_data/batch_size)
for epoch in range(nb_epoch):
res = deep_rank_model_.fit_generator(training_set,steps_per_epoch = steps_per_epoch,
initial_epoch=epoch,
epochs = epoch+1,
verbose=1,
shuffle = True)
print(res.history)
train_loss = res.history['loss'][0]
nsml.report(summary=True, epoch=epoch, epoch_total=nb_epoch, loss=train_loss)
nsml.save(epoch)