Skip to content

Commit

Permalink
Merge pull request #132 from MaRDI4NFDI/openml
Browse files Browse the repository at this point in the history
Openml
  • Loading branch information
LizzAlice authored Mar 21, 2024
2 parents 76b54d0 + dc6e441 commit 9e2e975
Show file tree
Hide file tree
Showing 9 changed files with 831 additions and 1 deletion.
437 changes: 437 additions & 0 deletions mardi_importer/mardi_importer/openml/OpenMLDataset.py

Large diffs are not rendered by default.

62 changes: 62 additions & 0 deletions mardi_importer/mardi_importer/openml/OpenMLPublication.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
import sys

class OpenMLPublication:
""" Class to manage OpenML publications in the local Wikibase instance.
If there is already an item with this doi or arxiv id, it gets fetched.
Attributes:
integrator:
MardiIntegrator instance
identifier:
arxiv id or doi
identifier_type:
'arxiv' or 'doi'
"""

def __init__(
self,
integrator,
identifier,
identifier_type,
):
self.api = integrator
self.identifier = identifier
self.identifier_type = identifier_type
self.item = self.api.item.new()

def exists(self):
"""Checks if there is an item with that identifier in the local wikibase instance.
Returns:
String: Entity ID
"""
if self.identifier_type == "doi":
QID_list = self.api.search_entity_by_value(
"wdt:P356", self.identifier
)
elif self.identifier_type == "arxiv":
QID_list = self.api.search_entity_by_value(
"wdt:P818", self.identifier
)
else:
sys.exit(f"Invalid identifier type {self.identifier_type}")
if not QID_list:
self.QID = None
else:
self.QID = QID_list[0]
if self.QID:
print(f"Publication with qid {self.QID} exists")
return(self.QID)

def create(self):
self.item.add_claim("wdt:P31", "wd:Q13442814")
if self.identifier_type == "doi":
self.item.add_claim("wdt:P356", self.identifier)
elif self.identifier_type == "arxiv":
self.item.add_claim("wdt:P356", self.identifier)
profile_prop = self.api.get_local_id_by_label("MaRDI profile type", "property")
profile_target = self.api.get_local_id_by_label("MaRDI publication profile", "property")
self.item.add_claim(profile_prop, profile_target)
self.item.descriptions.set(language="en", value=f"scientific article about an OpenML dataset")
publication_id = self.item.write().id
print(f"Publication with the qid {publication_id} has been created.")
return publication_id

184 changes: 184 additions & 0 deletions mardi_importer/mardi_importer/openml/OpenMLSource.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
from mardi_importer.importer import ADataSource
import openml
from mardi_importer.integrator import MardiIntegrator
from .OpenMLDataset import OpenMLDataset
import os
import json
from itertools import zip_longest

class OpenMLSource(ADataSource):
def __init__(self):
self.integrator = MardiIntegrator()
self.filepath = os.path.realpath(os.path.dirname(__file__))
def setup(self):
"""Create all necessary properties and entities for zbMath"""
# Import entities from Wikidata
filename = self.filepath + "/wikidata_entities.txt"
self.integrator.import_entities(filename=filename)
self.create_local_entities()
# self.de_number_prop = self.integrator.get_local_id_by_label(
# "zbMATH DE Number", "property"
# )
# self.keyword_prop = self.integrator.get_local_id_by_label(
# "zbMATH keyword string", "property"
# )

def create_local_entities(self):
filename = self.filepath + "/new_entities.json"
f = open(filename)
entities = json.load(f)

for prop_element in entities["properties"]:
prop = self.integrator.property.new()
prop.labels.set(language="en", value=prop_element["label"])
prop.descriptions.set(language="en", value=prop_element["description"])
prop.datatype = prop_element["datatype"]
if not prop.exists():
prop.write()

for item_element in entities["items"]:
item = self.integrator.item.new()
item.labels.set(language="en", value=item_element["label"])
item.descriptions.set(language="en", value=item_element["description"])
for key, value in item_element["claims"].items():
item.add_claim(key, value=value)
if not item.exists():
item.write()

def pull(self):
dataset_dict = {"name": [], "dataset_id": [], "version": [], "creators": [],
"contributors": [], "collection_date": [], "upload_date": [],
"license": [], "url":[], "default_target_attribute":[], "row_id_attribute":[],
"tags":[], "original_data_url":[], "paper_url":[],
"md5_checksum": [], "features": [], "num_binary_features":[],
"num_classes":[], "num_features":[], "num_instances":[], "num_instances_missing_vals":[],
"num_missing_vals":[], "num_numeric_features":[], "num_symbolic_features":[],
"format":[]}
dataset_df = openml.datasets.list_datasets(output_format="dataframe")
did_list = dataset_df["did"].unique()
for did in did_list:
try:
ds = openml.datasets.get_dataset(int(did), download_data=False)
except Exception as e:
try:
ds = openml.datasets.get_dataset(int(did), download_data=False, download_qualities=False)
except Exception as e:
ds = openml.datasets.get_dataset(int(did), download_data=False, download_qualities=False, download_features_meta_data=False)
dataset_dict["name"].append(ds.name)
dataset_dict["dataset_id"].append(did)
dataset_dict["version"].append(ds.version)
dataset_dict["creators"].append(ds.creator)
dataset_dict["contributors"].append(ds.contributor)
dataset_dict["collection_date"].append(ds.collection_date)
dataset_dict["upload_date"].append(ds.upload_date)
dataset_dict["license"].append(ds.licence)
dataset_dict["url"].append(ds.url)
dataset_dict["default_target_attribute"].append(ds.default_target_attribute)
dataset_dict["row_id_attribute"].append(ds.row_id_attribute)
dataset_dict["tags"].append(ds.tag)
dataset_dict["original_data_url"].append(ds.original_data_url)
dataset_dict["paper_url"].append(ds.paper_url)
dataset_dict["md5_checksum"].append(ds.md5_checksum)
try:
dataset_dict["features"].append(ds.features)
except:
dataset_dict["features"].append(None)
try:
qualities = ds.qualities
except:
dataset_dict["num_binary_features"].append(None)
dataset_dict["num_classes"].append(None)
dataset_dict["num_features"].append(None)
dataset_dict["num_instances"].append(None)
dataset_dict["num_instances_missing_vals"].append(None)
dataset_dict["num_missing_vals"].append(None)
dataset_dict["num_numeric_features"].append(None)
dataset_dict["num_symbolic_features"].append(None)
continue
if 'NumberOfBinaryFeatures' in ds.qualities:
dataset_dict["num_binary_features"].append(ds.qualities['NumberOfBinaryFeatures'])
else:
dataset_dict["num_binary_features"].append(None)
if 'NumberOfClasses' in ds.qualities:
dataset_dict["num_classes"].append(ds.qualities['NumberOfClasses'])
else:
dataset_dict["num_classes"].append(None)
if 'NumberOfFeatures' in ds.qualities:
dataset_dict["num_features"].append(ds.qualities['NumberOfFeatures'])
else:
dataset_dict["num_features"].append(None)
if 'NumberOfInstances' in ds.qualities:
dataset_dict["num_instances"].append(ds.qualities['NumberOfInstances'])
else:
dataset_dict["num_instances"].append(None)
if 'NumberOfInstancesWithMissingValues' in ds.qualities:
dataset_dict["num_instances_missing_vals"].append(ds.qualities['NumberOfInstancesWithMissingValues'])
else:
dataset_dict["num_instances_missing_vals"].append(None)
if 'NumberOfMissingValues' in ds.qualities:
dataset_dict["num_missing_vals"].append(ds.qualities['NumberOfMissingValues'])
else:
dataset_dict["num_missing_vals"].append(None)
if 'NumberOfNumericFeatures' in ds.qualities:
dataset_dict["num_numeric_features"].append(ds.qualities['NumberOfNumericFeatures'])
else:
dataset_dict["num_numeric_features"].append(None)
if 'NumberOfSymbolicFeatures' in ds.qualities:
dataset_dict["num_symbolic_features"].append(ds.qualities['NumberOfSymbolicFeatures'])
else:
dataset_dict["num_symbolic_features"].append(None)
return(dataset_dict)

def push(self):
import pickle
with open('/data/dataset_dict.p', 'rb') as handle:
dataset_dict = pickle.load(handle)
# dataset_dict = {'name': ['kr-vs-kp'],
# 'description': ['Author: Alen Shapiro\nSource: [UCI](https://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.+King-Pawn))\nPlease cite: [UCI citation policy](https://archive.ics.uci.edu/ml/citation_policy.html)\n\n1. Title: Chess End-Game -- King+Rook versus King+Pawn on a7\n(usually abbreviated KRKPA7). The pawn on a7 means it is one square\naway from queening. It is the King+Rook\'s side (white) to move.\n\n2. Sources:\n(a) Database originally generated and described by Alen Shapiro.\n(b) Donor/Coder: Rob Holte (holte@uottawa.bitnet). The database\nwas supplied to Holte by Peter Clark of the Turing Institute\nin Glasgow (pete@turing.ac.uk).\n(c) Date: 1 August 1989\n\n3. Past Usage:\n- Alen D. Shapiro (1983,1987), "Structured Induction in Expert Systems",\nAddison-Wesley. This book is based on Shapiro\'s Ph.D. thesis (1983)\nat the University of Edinburgh entitled "The Role of Structured\nInduction in Expert Systems".\n- Stephen Muggleton (1987), "Structuring Knowledge by Asking Questions",\npp.218-229 in "Progress in Machine Learning", edited by I. Bratko\nand Nada Lavrac, Sigma Press, Wilmslow, England SK9 5BB.\n- Robert C. Holte, Liane Acker, and Bruce W. Porter (1989),\n"Concept Learning and the Problem of Small Disjuncts",\nProceedings of IJCAI. Also available as technical report AI89-106,\nComputer Sciences Department, University of Texas at Austin,\nAustin, Texas 78712.\n\n4. Relevant Information:\nThe dataset format is described below. Note: the format of this\ndatabase was modified on 2/26/90 to conform with the format of all\nthe other databases in the UCI repository of machine learning databases.\n\n5. Number of Instances: 3196 total\n\n6. Number of Attributes: 36\n\n7. Attribute Summaries:\nClasses (2): -- White-can-win ("won") and White-cannot-win ("nowin").\nI believe that White is deemed to be unable to win if the Black pawn\ncan safely advance.\nAttributes: see Shapiro\'s book.\n\n8. Missing Attributes: -- none\n\n9. Class Distribution:\nIn 1669 of the positions (52%), White can win.\nIn 1527 of the positions (48%), White cannot win.\n\nThe format for instances in this database is a sequence of 37 attribute values.\nEach instance is a board-descriptions for this chess endgame. The first\n36 attributes describe the board. The last (37th) attribute is the\nclassification: "win" or "nowin". There are 0 missing values.\nA typical board-description is\n\nf,f,f,f,f,f,f,f,f,f,f,f,l,f,n,f,f,t,f,f,f,f,f,f,f,t,f,f,f,f,f,f,f,t,t,n,won\n\nThe names of the features do not appear in the board-descriptions.\nInstead, each feature correponds to a particular position in the\nfeature-value list. For example, the head of this list is the value\nfor the feature "bkblk". The following is the list of features, in\nthe order in which their values appear in the feature-value list:\n\n[bkblk,bknwy,bkon8,bkona,bkspr,bkxbq,bkxcr,bkxwp,blxwp,bxqsq,cntxt,dsopp,dwipd,\nhdchk,katri,mulch,qxmsq,r2ar8,reskd,reskr,rimmx,rkxwp,rxmsq,simpl,skach,skewr,\nskrxp,spcop,stlmt,thrsk,wkcti,wkna8,wknck,wkovl,wkpos,wtoeg]\n\nIn the file, there is one instance (board position) per line.\n\n\nNum Instances: 3196\nNum Attributes: 37\nNum Continuous: 0 (Int 0 / Real 0)\nNum Discrete: 37\nMissing values: 0 / 0.0%'],
# 'dataset_id': [3],
# 'version': [1],
# 'creators': ['Alen Shapiro'],
# 'contributors': ['Rob Holte'],
# 'collection_date': ['1989-08-01'],
# 'upload_date': ['2014-04-06T23:19:28'],
# 'license': ['CC0'],
# 'url': ['https://api.openml.org/data/v1/download/3/kr-vs-kp.arff'],
# 'default_target_attribute': ['class'],
# 'row_id_attribute': [None],
# 'tags': [['Machine Learning',
# 'Mathematics',
# 'mythbusting_1',
# 'OpenML-CC18',
# 'OpenML100',
# 'study_1',
# 'study_123',
# 'study_14',
# 'study_144',
# 'uci']],
# 'original_data_url': ['https://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.+King-Pawn)'],
# 'paper_url': ['https://dl.acm.org/doi/abs/10.5555/32231'],
# 'md5_checksum': ['ad6eb32b7492524d4382a40e23cdbb8e'],
# 'features': [{0: ["0 - bkblk (nominal)"],
# 1: ["1 - bknwy (nominal)"],
# 2: ["2 - bkon8 (nominal)"],
# 3: ["3 - bkona (nominal)"],
# 36: ["36 - class (nominal)"]}],
# 'num_binary_features': [35.0],
# 'num_classes': [2.0],
# 'num_features': [37.0],
# 'num_instances': [3196.0],
# 'num_instances_missing_vals': [0.0],
# 'num_missing_vals': [0.0],
# 'num_numeric_features': [0.0],
# 'num_symbolic_features': [37.0],
# 'format': ['ARFF']}
for items in zip_longest(*[dataset_dict[key] for key in dataset_dict], fillvalue=None):
lookup_dict = dict(zip(dataset_dict.keys(), items))
dataset = OpenMLDataset(
integrator = self.integrator,
**lookup_dict
)
if not dataset.exists():
dataset.create()
else:
dataset.update()
1 change: 1 addition & 0 deletions mardi_importer/mardi_importer/openml/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from .OpenMLSource import OpenMLSource
21 changes: 21 additions & 0 deletions mardi_importer/mardi_importer/openml/misc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
from datetime import datetime

def convert_time_to_iso(time_string):
try:
# Attempt to parse the input time string
dt = datetime.strptime(time_string, "%Y-%m-%d %H:%M:%S")
except ValueError:
try:
dt = datetime.strptime(time_string, "%Y-%m-%dT%H:%M:%S")
except ValueError:
try:
dt = datetime.strptime(time_string, "%Y-%m-%d")
except ValueError:
# Handle other formats as needed
print(time_string)
print(a)
return None

# Convert to ISO format
iso_format = dt.isoformat() + "Z"
return iso_format
98 changes: 98 additions & 0 deletions mardi_importer/mardi_importer/openml/new_entities.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
{
"properties": [
{
"label": "dataset version",
"description": "Version of a dataset",
"datatype": "string"
},
{
"label": "collection date",
"description": "date as a string",
"datatype": "string"
},
{
"label": "upload date",
"description": "upload date of file",
"datatype": "time"
},
{
"label": "default target attribute",
"description": "the default target attribute",
"datatype": "string"
},
{
"label": "row id attribute",
"description": "the row id attribute",
"datatype": "string"
},
{
"label": "OpenML semantic tag",
"description": "the OpenML semantic tag",
"datatype": "string"
},
{
"label": "has feature",
"description": "it has feature",
"datatype": "string"
},
{
"label": "data type",
"description": "the data type",
"datatype": "string"
},
{
"label": "number of binary features",
"description": "the number of binary features",
"datatype": "quantity"
},
{
"label": "number of classes",
"description": "the number of classes",
"datatype": "quantity"
},
{
"label": "number of features",
"description": "the number of features",
"datatype": "quantity"
},
{
"label": "number of instances",
"description": "the number of instances",
"datatype": "quantity"
},
{
"label": "number of instances with missing values",
"description": "the number of instances with missing values",
"datatype": "quantity"
},
{
"label": "number of missing values",
"description": "the number of missing values",
"datatype": "quantity"
},
{
"label": "number of numeric features",
"description": "the number of numeric features",
"datatype": "quantity"
},
{
"label": "number of symbolic features",
"description": "the number of symbolic features",
"datatype": "quantity"
},
{
"label": "citation text",
"description": "free-form text about citation",
"datatype": "string"
}
],
"items": [
{
"label": "Sparse ARFF",
"description": "File format",
"claims": {
"wdt:P31": "wd:Q235557"
}
}
]
}
14 changes: 14 additions & 0 deletions mardi_importer/mardi_importer/openml/wikidata_entities.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
Q1172284
P2701
P4092
Q185235
Q4489412
P356
P818
Q28130012
Q27017232
Q6938433
Q13442814
Q185235
P459
P11238
Loading

0 comments on commit 9e2e975

Please sign in to comment.