MadAnalysis 5 output interpreter for expert mode. Parses the cutflow and histogram collections and constructs it with an interactable interface.
pip install ma5-expert
- Cutflow Collection
- Histogram Collection
- Integration to Public Analysis Database through MadAnalysis
- Citation
Examples can be found in examples folder.
-
Parse all the signal regions and construct an object-base, interactable cutflow.
-
Write combined LaTeX tables for different samples.
-
Compare samples and construct validation tables which allow you to calculate the difference of the relative efficiencies for each given sample with respect to a reference sample.
-
Compare signal and background samples and calculate the figure of merit.
-
Possibility to include experimentally available cutflow data and compare it against MadAnalysis 5 cutflow output.
-
Calculate Monte Carlo uncertainty per cut on the fly
-
Simple cutflow:
CutFlowCollection
needs CutFlows
path of your sample in MadAnalysis 5 Analysis folder.
We provide an ma5 directory in examples
folder so we will go through and the code using that.
Parsing a cutflow simply requires the path of the CutFlows
folder and optionally xsection
[pb], lumi
[1/fb]
and/or Nevents
. Note that xsec
overwrites the number of events option, if provided number of events
are always calculated using the cross section.
import ma5_expert as ma5
sample = ma5.cutflow.Collection(
"docs/examples/mass1000005_300.0_mass1000022_60.0_mass1000023_250.0_xs_5.689/Output/SAF/defaultset/atlas_susy_2018_31/Cutflows",
xsection = 5.689, lumi = 139.
)
Here the first input is the path of the CutFlows
folder and the rest are simply cross section and
luminosity information. One can see the signal regions by simply printing the keys
of the CutFlowCollection
object;
print(sample.SRnames)
# Output:
# ['SRC_28', 'SRA_M', 'SRA_L', 'SRA_H', 'SRA', 'SRC', 'SRB', 'SRC_26', 'SRC_24', 'SRC_22']
Each signal region is accessible through CutFlowCollection
object. For instance one can get the names of
the cuts applied in one of the signal regions.
print(sample.SRA.CutNames)
# Output:
# ['Initial', '$N_{lep} = 0$', '$N_{j} \\geq 6$', '$N_{b} \\geq 4$',
# '$\\slashed{E}_T > 350$ [GeV]', '$min(\\Delta\\phi(j_{1-4},\\slashed{E}_T))>0.4$ [rad]',
# '$\\tau^h$ veto', '$p^{b_1}_T > 200$ [GeV]', '$\\Delta R_{max}(b,b)>2.5$',
# '$\\Delta R_{max-min}(b,b)<2.5$', '$m(h_{cand})>80$ [GeV]', '$m_{eff} > 1$ [TeV]']
Or simply print the entire cutflow;
print(sample.SRA)
# Output:
# * SRA :
# * Initial :
# - Number of Entries : 200000
# - Number of Events : 790771.000 ± 0.000(ΔMC)
# - Cut & Rel Efficiency : 1.000, 1.000
# * $N_{lep} = 0$ :
# - Number of Entries : 156651
# - Number of Events : 499908.962 ± 609.064(ΔMC)
# - Cut & Rel Efficiency : 0.632, 0.632
# * $N_{j} \geq 6$ :
# - Number of Entries : 65546
# - Number of Events : 209971.179 ± 362.184(ΔMC)
# - Cut & Rel Efficiency : 0.266, 0.420
# * $N_{b} \geq 4$ :
# - Number of Entries : 19965
# - Number of Events : 63883.202 ± 123.205(ΔMC)
# - Cut & Rel Efficiency : 0.081, 0.304
# * $\slashed{E}_T > 350$ [GeV] :
# - Number of Entries : 191
# - Number of Events : 755.117 ± 1.688(ΔMC)
# - Cut & Rel Efficiency : 0.001, 0.012
# * $min(\Delta\phi(j_{1-4},\slashed{E}_T))>0.4$ [rad] :
# - Number of Entries : 72
# - Number of Events : 284.658 ± 0.636(ΔMC)
# - Cut & Rel Efficiency : 0.000, 0.377
# * $\tau^h$ veto :
# - Number of Entries : 68
# - Number of Events : 268.850 ± 0.601(ΔMC)
# - Cut & Rel Efficiency : 0.000, 0.944
# * $p^{b_1}_T > 200$ [GeV] :
# - Number of Entries : 33
# - Number of Events : 130.474 ± 0.292(ΔMC)
# - Cut & Rel Efficiency : 0.000, 0.485
# * $\Delta R_{max}(b,b)>2.5$ :
# - Number of Entries : 25
# - Number of Events : 98.836 ± 0.221(ΔMC)
# - Cut & Rel Efficiency : 0.000, 0.758
# * $\Delta R_{max-min}(b,b)<2.5$ :
# - Number of Entries : 25
# - Number of Events : 98.836 ± 0.221(ΔMC)
# - Cut & Rel Efficiency : 0.000, 1.000
# * $m(h_{cand})>80$ [GeV] :
# - Number of Entries : 10
# - Number of Events : 39.543 ± 0.088(ΔMC)
# - Cut & Rel Efficiency : 0.000, 0.400
# * $m_{eff} > 1$ [TeV] :
# - Number of Entries : 10
# - Number of Events : 39.543 ± 0.088(ΔMC)
# - Cut & Rel Efficiency : 0.000, 1.000
As can be seen, it shows number of entries (MonteCarlo events), number of events (lumi weighted), cut efficiency and relative efficiency. The error in number of events is the MonteCarlo uncertainty.
It is also possible to access practical information
print(sample.SRA.isAlive)
# Output: True
which simply checks the number of entries in the final cut. Hence one can remove the SRs which does not have any statistics;
alive = sample.get_alive()
print(f"Number of cutflows survived : {len(alive)},\nNames of the cutflows : { ', '.join([x.id for x in alive]) }")
# Output:
# Number of cutflows survived : 8,
# Names of the cutflows : SRA_M, SRA_L, SRA_H, SRA, SRC, SRB, SRC_24, SRC_22
Each cut is accessible through the interface;
fifth = sample.SRA[5]
print(f"Efficiency : {fifth.eff:.3f}, Relative MC efficiency {fifth.mc_rel_eff:.3f}, number of events {fifth.Nevents:.1f}, sum of weights {fifth.sumW:.3f}")
# Output:
# Efficiency : 0.0004, Relative MC efficiency 0.377, number of events 284.7, sum of weights 0.008
One can also construct independent signal regions for sake of comparisson with Ma5 results;
SRA_presel = [319.7,230.5,192.3,87.9,45.1,20.9,19.3,18.2,17.6,15.0,13.7]
ATLAS = ma5.cutflow.Collection()
ATLAS.addSignalRegion('SRA', ma5.SRA.CutNames, SRA_presel+[13.7])
ATLAS.addSignalRegion('SRA_L', ma5.SRA_L.CutNames, SRA_presel+[0.4])
ATLAS.addSignalRegion('SRA_M', ma5.SRA_M.CutNames, SRA_presel+[6.4])
ATLAS.addSignalRegion('SRA_H', ma5.SRA_H.CutNames, SRA_presel+[7.0])
where all properties shown above applies to this new object as well.
- Parse all the histograms available in the
Histos.saf
file into interactable histogram object.
import ma5_expert as ma5
collection = ma5.histogram.Collection(
"docs/examples/mass1000005_300.0_mass1000022_60.0_mass1000023_250.0_xs_5.689/Output/SAF/defaultset/atlas_susy_2018_31/Histograms/histos.saf",
xsection = 5.689, lumi = 139.
)
print(collection)
# Collection of 6 histograms from `examples/mass1000005_300.0_mass1000022_60.0_mass1000023_250.0_xs_5.689/Output/SAF/defaultset/atlas_susy_2018_31/Histograms/histos.saf`
# * SRA_Meff: [ nbin: 11, min: 800.00, max: 3000.00 ]
# * SRA_Mh: [ nbin: 12, min: 0.00, max: 480.00 ]
# * SRB_PTj1: [ nbin: 9, min: 50.00, max: 950.00 ]
# * SRB_MhAvg: [ nbin: 16, min: 50.00, max: 450.00 ]
# * SRC_MET: [ nbin: 13, min: 200.00, max: 1500.00 ]
# * SRC_Sig: [ nbin: 19, min: 17.00, max: 36.00 ]
Extract the plotting information:
xbins, bins, weights = collection.lumi_histogram("SRA_Mh")
plt.hist(xbins, bins=bins, weights=weights)
plt.xlabel("$M_{h}\ {\\rm [GeV]}$")
plt.ylabel("${\\rm Number\ of\ events}$")
plt.xlim([min(bins), max(bins)])
plt.show()
ma5-expert
is capable of running MadAnalysis sub-modules through a backend manager. Desired MadAnalysis
backend can be set via
import ma5_expert as ma5
ma5.BackendManager.set_madanalysis_backend("/PATH/TO/MADANALYSIS5")
This will initiate the MadAnalysis backend to be used. Then one can use the reinterpretation tools such as exclusion limit computation, externally. One can initiate PAD interface via
interface = ma5.pad.PADInterface(
sample_path="ma5_expert/docs/examples/mass1000005_300.0_mass1000022_60.0_mass1000023_250.0_xs_5.689",
dataset_name="defaultset"
)
where sample_path
is the main location of the analysis which has been held, and dataset_name
is the name
of the dataset which corresponds to the particular folder name under sample_path + /Outputs/SAF/
. Then results
can be computed via
results = interface.compute_exclusion("atlas_susy_2018_31", 5.689, ma5.backend.PADType.PADForSFS)
Note that the given example only computes for atlas_susy_2018_31
and this analysis has been held under PADForSFS
which is indicated via PADType
. This simply tells function where to look to find corresponding info file, which
assumes that PADForSFS
has been installed. The value 5.689
sets the cross section in pb.
Developed for arXiv:2006.09387
@article{Araz:2020lnp,
author = "Araz, Jack Y. and Fuks, Benjamin and Polykratis, Georgios",
title = "{Simplified fast detector simulation in MADANALYSIS 5}",
eprint = "2006.09387",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
doi = "10.1140/epjc/s10052-021-09052-5",
journal = "Eur. Phys. J. C",
volume = "81",
number = "4",
pages = "329",
year = "2021"
}
-
Overall Ma5 Analysis parser
-
Add theoretical uncertainties