forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist.py
115 lines (88 loc) · 4.17 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import argparse
import gzip
import json
import logging
import os
import struct
import mxnet as mx
import numpy as np
from sagemaker_mxnet_container.training_utils import scheduler_host
def load_data(path):
with gzip.open(find_file(path, "labels.gz")) as flbl:
struct.unpack(">II", flbl.read(8))
labels = np.fromstring(flbl.read(), dtype=np.int8)
with gzip.open(find_file(path, "images.gz")) as fimg:
_, _, rows, cols = struct.unpack(">IIII", fimg.read(16))
images = np.fromstring(fimg.read(), dtype=np.uint8).reshape(len(labels), rows, cols)
images = images.reshape(images.shape[0], 1, 28, 28).astype(np.float32) / 255
return labels, images
def find_file(root_path, file_name):
for root, dirs, files in os.walk(root_path):
if file_name in files:
return os.path.join(root, file_name)
def build_graph():
data = mx.sym.var('data')
data = mx.sym.flatten(data=data)
fc1 = mx.sym.FullyConnected(data=data, num_hidden=128)
act1 = mx.sym.Activation(data=fc1, act_type="relu")
fc2 = mx.sym.FullyConnected(data=act1, num_hidden=64)
act2 = mx.sym.Activation(data=fc2, act_type="relu")
fc3 = mx.sym.FullyConnected(data=act2, num_hidden=10)
return mx.sym.SoftmaxOutput(data=fc3, name='softmax')
def train(batch_size, num_epoch, learning_rate, optimizer, training_channel,
testing_channel, hosts, current_host, model_dir):
(train_labels, train_images) = load_data(training_channel)
(test_labels, test_images) = load_data(testing_channel)
# Alternatively to splitting in memory, the data could be pre-split in S3 and use ShardedByS3Key
# to do parallel training.
shard_size = len(train_images) // len(hosts)
for i, host in enumerate(hosts):
if host == current_host:
start = shard_size * i
end = start + shard_size
break
train_iter = mx.io.NDArrayIter(train_images[start:end], train_labels[start:end], batch_size, shuffle=True)
val_iter = mx.io.NDArrayIter(test_images, test_labels, batch_size)
logging.getLogger().setLevel(logging.DEBUG)
kvstore = 'local' if len(hosts) == 1 else 'dist_sync'
mlp_model = mx.mod.Module(
symbol=build_graph(),
context=get_train_context())
mlp_model.fit(train_iter,
eval_data=val_iter,
kvstore=kvstore,
optimizer=optimizer,
optimizer_params={'learning_rate': learning_rate},
eval_metric='acc',
batch_end_callback=mx.callback.Speedometer(batch_size, 100),
num_epoch=num_epoch)
return mlp_model
if current_host == scheduler_host(hosts):
save(model_dir, mlp_model)
def get_train_context():
if int(os.environ['SM_NUM_GPUS']) > 0:
return mx.gpu()
return mx.cpu()
def save(model_dir, model):
model.symbol.save(os.path.join(model_dir, 'model-symbol.json'))
model.save_params(os.path.join(model_dir, 'model-0000.params'))
signature = [{'name': data_desc.name, 'shape': [dim for dim in data_desc.shape]}
for data_desc in model.data_shapes]
with open(os.path.join(model_dir, 'model-shapes.json'), 'w') as f:
json.dump(signature, f)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--num_epoch', type=int, default=25)
parser.add_argument('--learning_rate', type=float, default=0.1)
parser.add_argument('--optimizer', default='sgd')
parser.add_argument('--model_dir', type=str, default=os.environ['SM_MODEL_DIR'])
parser.add_argument('--train', type=str, default=os.environ['SM_CHANNEL_TRAIN'])
parser.add_argument('--test', type=str, default=os.environ['SM_CHANNEL_TEST'])
parser.add_argument('--current_host', type=str, default=os.environ['SM_CURRENT_HOST'])
parser.add_argument('--hosts', type=list, default=json.loads(os.environ['SM_HOSTS']))
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
train(args.batch_size, args.num_epoch, args.learning_rate, args.optimizer,
args.train, args.test, args.hosts, args.current_host, args.model_dir)