Roboschool is an open source physics simulator that is commonly used to train RL policies for robotic systems. Roboschool defines a variety of Gym environments that correspond to different robotics problems. Here we're highlighting a few of them at varying levels of difficulty:
- Reacher (easy) - a very simple robot with just 2 joints reaches for a target
- Hopper (medium) - a simple robot with one leg and a foot learns to hop down a track
- Humanoid (difficult) - a complex 3D robot with two arms, two legs, etc. learns to balance without falling over and then to run on a track
The simpler problems train faster with less computational resources. The more complex problems are more fun.
In these examples, we demonstrate:
- Vertical scaling of RL training (single node, multiple CPU cores or GPUs)
- Horizontal scaling of RL training across multiple nodes (CPU or GPU)
- Use of SageMaker's Automatic Model Tuning functionality to optimize the training of an RL model, using the Roboschool environment.
rl_roboschool_ray.ipynb
: Scaling RL training across multiple CPU cores (vertical scaling)rl_roboschool_ray_automatic_model_tuning.ipynb
: Shows how to use SageMaker's Automatic Model Tuner to optimize hyperparametersrl_roboschool_ray_distributed.ipynb
: Scaling RL training across multiple instances, including heterogeneous GPU and CPU clustersDockerfile
: Dockerfile building the container with Roboschool, Ray and their dependencies by using SageMaker's RL tensorflow container as base.src/
train-hopper.py
: PPO config for training RoboschoolHopper-v1train-humanoid.py
: PPO config for training RoboschoolHumanoid-v1train-reacher.py
: PPO config for training RoboschoolReacher-v1