-
Notifications
You must be signed in to change notification settings - Fork 4
/
main.py
134 lines (109 loc) · 4.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# MIT License
#
# Copyright (c) 2020 Mehran Maghoumi
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ----------------------------------------------------------------------------------------------------------------------
import torch
import sys
from options import Options
from dataloader.dataset import Dataset
from models.DeepNAG import DeepNAG
from models.DeepGAN import DeepGAN
# ----------------------------------------------------------------------------------------------------------------------
class Logger(object):
"""Helper class for redirecting print calls to both the console and a file"""
def __init__(self, filename, stream=sys.stdout):
self.terminal = stream
self.log = open(filename, "w")
def write(self, message):
"""
Write the message
:param message: the message to write
"""
self.terminal.write(message)
self.log.write(message)
self.flush()
def flush(self):
"""
Flush the message into file
"""
self.terminal.flush()
self.log.flush()
# ----------------------------------------------------------------------------------------------------------------------
def train(model_t, dataset, device):
"""
Trains a model using the given arguments.
:param model_t: the network model to use
:param dataset: the dataset
:param device: the computation device to use
"""
data_split = dataset.get_split()
model = model_t(dataset.num_classes, dataset.num_features, dataset.opt, device, dataset.visualizer)
model.run_training_loop(data_split)
model.save()
# ----------------------------------------------------------------------------------------------------------------------
def evaluate(model_t, dataset, device):
"""
Visually evaluate a trained model.
:param model_t: the network model to use
:param dataset: the dataset
:param device: the computation device to use
"""
visualizer = dataset.visualizer
data_split = dataset.get_split()
model = model_t(dataset.num_classes, dataset.num_features, dataset.opt, device, visualizer)
model.load(opt.evaluate)
visualizer.visualize(model, data_split.get_data_loader())
visualizer.show()
# ----------------------------------------------------------------------------------------------------------------------
if __name__ == "__main__":
# Ensure correct python version
if sys.version_info[0] < 3:
raise Exception("Python 3 or a more recent version is required.")
opt = Options()
opt.parse()
# Setup output redirection
sys.stdout = Logger(opt.run_log_file, sys.stdout)
sys.stderr = Logger(opt.run_err_file, sys.stderr)
if opt.experiment_name is not None:
print(F"Experiment name: {opt.experiment_name}")
print(F"Run directory: {opt.run_dir}")
# Pick the selected model
if opt.model == 'DeepNAG':
model_t = DeepNAG
print('Selected model: DeepNAG')
elif opt.model == 'DeepGAN':
model_t = DeepGAN
print('Selected model: DeepGAN')
else:
raise Exception(F"Unknown model '{opt.model}'")
# Determine the computation device to use
if opt.use_cuda:
print("Using CUDA")
device = torch.device('cuda:0')
else:
print("Using CPU")
device = torch.device('cpu')
# Instantiate the dataset
dataset = Dataset.instantiate(opt)
if opt.evaluate is None:
train(model_t, dataset, device)
else:
evaluate(model_t, dataset, device)