Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create 8puzzleproblem.py #46

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
120 changes: 120 additions & 0 deletions Python/8puzzleproblem.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
class Node:
def __init__(self,data,level,fval):
""" Initialize the node with the data, level of the node and the calculated fvalue """
self.data = data
self.level = level
self.fval = fval

def generate_child(self):
""" Generate child nodes from the given node by moving the blank space
either in the four directions {up,down,left,right} """
x,y = self.find(self.data,'_')
""" val_list contains position values for moving the blank space in either of
the 4 directions [up,down,left,right] respectively. """
val_list = [[x,y-1],[x,y+1],[x-1,y],[x+1,y]]
children = []
for i in val_list:
child = self.shuffle(self.data,x,y,i[0],i[1])
if child is not None:
child_node = Node(child,self.level+1,0)
children.append(child_node)
return children

def shuffle(self,puz,x1,y1,x2,y2):
""" Move the blank space in the given direction and if the position value are out
of limits the return None """
if x2 >= 0 and x2 < len(self.data) and y2 >= 0 and y2 < len(self.data):
temp_puz = []
temp_puz = self.copy(puz)
temp = temp_puz[x2][y2]
temp_puz[x2][y2] = temp_puz[x1][y1]
temp_puz[x1][y1] = temp
return temp_puz
else:
return None


def copy(self,root):
""" Copy function to create a similar matrix of the given node"""
temp = []
for i in root:
t = []
for j in i:
t.append(j)
temp.append(t)
return temp

def find(self,puz,x):
""" Specifically used to find the position of the blank space """
for i in range(0,len(self.data)):
for j in range(0,len(self.data)):
if puz[i][j] == x:
return i,j


class Puzzle:
def __init__(self,size):
""" Initialize the puzzle size by the specified size,open and closed lists to empty """
self.n = size
self.open = []
self.closed = []

def accept(self):
""" Accepts the puzzle from the user """
puz = []
for i in range(0,self.n):
temp = input().split(" ")
puz.append(temp)
return puz

def f(self,start,goal):
""" Heuristic Function to calculate hueristic value f(x) = h(x) + g(x) """
return self.h(start.data,goal)+start.level

def h(self,start,goal):
""" Calculates the different between the given puzzles """
temp = 0
for i in range(0,self.n):
for j in range(0,self.n):
if start[i][j] != goal[i][j] and start[i][j] != '_':
temp += 1
return temp


def process(self):
""" Accept Start and Goal Puzzle state"""
print("Enter the start state matrix \n")
start = self.accept()
print("Enter the goal state matrix \n")
goal = self.accept()

start = Node(start,0,0)
start.fval = self.f(start,goal)
""" Put the start node in the open list"""
self.open.append(start)
print("\n\n")
while True:
cur = self.open[0]
print("")
print(" | ")
print(" | ")
print(" \\\'/ \n")
for i in cur.data:
for j in i:
print(j,end=" ")
print("")
""" If the difference between current and goal node is 0 we have reached the goal node"""
if(self.h(cur.data,goal) == 0):
break
for i in cur.generate_child():
i.fval = self.f(i,goal)
self.open.append(i)
self.closed.append(cur)
del self.open[0]

""" sort the opne list based on f value """
self.open.sort(key = lambda x:x.fval,reverse=False)


puz = Puzzle(3)
puz.process()