forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
72 lines (58 loc) · 2.84 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py
To create the package for pypi.
1. Change the version in __init__.py and setup.py.
2. Commit these changes with the message: "Release: VERSION"
3. Add a tag in git to mark the release: "git tag VERSION -m'Adds tag VERSION for pypi' "
Push the tag to git: git push --tags origin master
4. Build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
For the wheel, run: "python setup.py bdist_wheel" in the top level allennlp directory.
(this will build a wheel for the python version you use to build it - make sure you use python 3.x).
For the sources, run: "python setup.py sdist"
You should now have a /dist directory with both .whl and .tar.gz source versions of allennlp.
5. Check that everything looks correct by uploading the package to the pypi test server:
twine upload dist/* -r pypitest
(pypi suggest using twine as other methods upload files via plaintext.)
Check that you can install it in a virtualenv by running:
pip install -i https://testpypi.python.org/pypi pytorch-transformers
6. Upload the final version to actual pypi:
twine upload dist/* -r pypi
7. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory.
"""
from io import open
from setuptools import find_packages, setup
setup(
name="pytorch_transformers",
version="1.0.0",
author="Thomas Wolf, Lysandre Debut, Victor Sanh, Tim Rault, Google AI Language Team Authors, Open AI team Authors",
author_email="thomas@huggingface.co",
description="Repository of pre-trained NLP Transformer models: BERT, GPT & GPT-2, Transformer-XL, XLNet and XLM",
long_description=open("README.md", "r", encoding='utf-8').read(),
long_description_content_type="text/markdown",
keywords='NLP deep learning transformer pytorch BERT GPT GPT-2 google openai CMU',
license='Apache',
url="https://github.com/huggingface/pytorch-transformers",
packages=find_packages(exclude=["*.tests", "*.tests.*",
"tests.*", "tests"]),
install_requires=['torch>=1.0.0',
'numpy',
'boto3',
'requests',
'tqdm',
'regex',
'sentencepiece'],
entry_points={
'console_scripts': [
"pytorch_transformers=pytorch_transformers.__main__:main",
]
},
# python_requires='>=3.5.0',
tests_require=['pytest'],
classifiers=[
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
'Programming Language :: Python :: 3',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
],
)